Section 14.1: Functions of two or more variables.

In this section, \(f \) will denote a function

\[
f : \mathbb{R}^2 \rightarrow \mathbb{R}
\]

- Domain: set of pairs of numbers
- Range: set of one number

\[
f(x, y) = z
\]

OR

\[
f : \mathbb{R}^3 \rightarrow \mathbb{R}
\]

\[
f(x, y, z) = w
\]

Concepts from Precalculus:

1. Domain: set of all \((x, y)\) in \(\mathbb{R}^2 \) for which \(f \) is defined

2. Range: set of all \(z \) in \(\mathbb{R} \) for which \(z = f(x, y) \) for some \((x, y) \) in \(\mathbb{R}^2 \)
Ex. 1

Find domain of \(f(x,y) = \sqrt{9-x^2-y} \) and sketch domain.

Solution:

Domain consists of all \((x,y)\) such that

\[
9-x^2-y \geq 0
\]

To graph this inequality, note that it is equivalent to

\[
y \leq 9-x^2
\]
So how do we examine graphs of \(f(x,y) \)? We use what are called level curves (or contour curves or contour lines).

Def: The level curve of \(f(x,y) \) at \(z = c \) is the curve (in \(\mathbb{R}^2 \))...
Note: Level curves show curves of constant \(z \) (height).

Ex. 2

Sketch level curves for \(f(x, y) = x^2 + 3y^2 \) for \(c = 0, 10, 20, \ldots, 50 \).

Solution:

Each level curve has the form \(x^2 + 3y^2 = c \)

So each curve is an ellipse centered at origin.
Ellipses are elongated x-axis.

Ellipses are not equally spaced.

What do the contours tell us about the shape of f?

Q: Starting from origin, in what direction does z (height)
direction does z (height) increase fastest?
A: In the y-direction.
(\textit{In general, steepness is indicated by closely packed contour lines})

General example of contour lines:

- **Elliptic paraboloid**
- **Steepest in y-direction**

![Diagram of contour lines and graphs](image)
1. Height is constant on each black trace.
2. Closely packed contour lines correspond to steep portions of graph.

One more example of contours... Look at level curves for

\[f(x, y) = x^2 - 3y^2 \]

Note: The curve \(x^2 - 3y^2 = c \) is a hyperbola.
So what does graph of $z = \nabla (x, y)$ actually look like?

We often want to talk about
rate of change of height with respect to distance in xy-plane.

Function does not change along the level curve

Contour interval: 100 m
Horizontal scale: 200 m

Average rate of change: \(\frac{\Delta \text{(height)}}{\Delta \text{(distance)}} \)

Avg ROC from \(\frac{200\text{m}}{} \)
A to B: \frac{200}{200} = 1

Average ROC from A to C: \frac{200}{400} = 0.5

Average ROC from A to D: 0 (since A and D have same height)

In general, rates of change depend on direction. So derivatives will be vectors, not scalars.

In future lecture
We will examine paths of steepest ascent (or descent).

(A) Vectors pointing approximately in the direction of steepest ascent

(B) Not a path of steepest ascent