1. Let $f(x, y) = 3x^3 - 12xy + 2y^2 + 10$. Find all critical points of f. Then classify each critical point as either a local minimum, local maximum, or neither (saddle).

2. The humidity at the point (x, y, z) is modeled by the function $H(x, y, z) = 20e^{-z}(1 + x^2 + y^2)^{-1}$. A weather balloon is equipped with a device to measure the humidity, and the balloon travels along the path given by $\mathbf{r}(t) = (\sqrt{t}, 4\sin(\pi t), t^2)$.

 (a) Calculate $\nabla H(x, y, z)$.
 (b) Find a parametrization of the line tangent to the balloon’s path at $t = 4$.
 (c) At what rate does the balloon’s device measure the humidity to be changing when $t = 4$?

3. The planes P_1 and P_2 are described by the following equations.

 $P_1 : \ 3x - 2y + z = 14$
 $P_2 : \ 5x + y - 8z = 6$

 (a) Find the angle between P_1 and P_2.
 (b) The planes P_1 and P_2 intersect in the line ℓ. Find a parametrization of ℓ.

4. Find the largest possible volume of a box with one corner at the origin and the opposite corner at a point (x, y, z) in the first octant $(x, y, z \geq 0)$ and lying on the paraboloid

 $z = 1 - \frac{x^2}{4} - \frac{y^2}{9}$

5. For each part, find a parametrization of the described curve. Each parametrization should consist of a single vector-valued function $\mathbf{r}(t)$.

 (a) the circle of radius 5 with center $(9, -1, 2)$ and lying in a plane parallel to the xz-plane
 (b) the intersection of the cone $x^2 + y^2 = z^2$ and the plane $3z = x + 4$

6. Let $f(x, y, z) = \frac{x^2y}{z}$. Use linear approximation to estimate the value of $f(2.03, 3.01, 0.98)$. Simplify your answer.

7. Assume that the positive x-axis points East and the positive y-axis points North. Suppose you are hiking on a terrain modeled by the equation $z = 3 - 4y - x^2 + 2xy$ and you are standing on the terrain above the point $P(-1, 2)$.

 (a) Determine the angle of inclination you would encounter if you were to head due North.
 (b) Determine the steepest possible slope of the terrain at P.
 (c) At what compass angle should you travel from P to encounter the slope of steepest descent? (The compass angle should be measured anticlockwise from East.)