1. Let W be a solid right circular cone with its vertex at the origin, with radius $R = 1$ and height $H = 2$. **Using spherical coordinates**, calculate the following integral.

$$\iiint_W \frac{2}{\sqrt{x^2 + y^2 + z^2}} \, dV$$

2. Let D be the region in the first quadrant that is inside the larger circle $x^2 + y^2 = 36$ and outside the smaller circle $(x-3)^2 + y^2 = 9$. **Using polar coordinates**, calculate the following integral.

$$\iint_D 3\sqrt{x^2 + y^2} \, dA$$

3. Let W be the region in the first octant that is bounded by the surface $z = 27 - x^3$ and the plane $x = 3y$. Write the integral

$$\iiint_W xy(x^2 + z^2) \, dV$$

as an iterated integral in the order $dydxdz$. **Do not evaluate your integral.**
4. Use the method of Lagrange multipliers to find the point on the ellipse

\[x^2 + 6y^2 + 3xy = 40 \]

with the largest x-coordinate.

5. Consider the vector field \(F(x, y, z) = \langle 3zy - 1, 4x, -y \rangle \).

8 pts

(a) Calculate the divergence and curl of \(F \).

8 pts

(b) Let \(C \) be the curve given by \(r(t) = \langle e^t, e^t, t \rangle \) for \(0 \leq t \leq 1 \). Calculate the line integral of \(F \) along \(C \).

6. Let \(D \) be the region in the \(xy \)-plane described and shown in the figure below.

\[D : \quad x^2 \leq y \leq 3x^2, \quad 1 \leq x^2y \leq 4 \]

(a) Find a rectangle \(R \) in the \(uv \)-plane and a map \(G \) such that \(G(R) = D \).

You may either specify \(G \) (give \(x \) and \(y \) in terms of \(u \) and \(v \)) or specify \(G^{-1} \) (give \(u \) and \(v \) in terms of \(x \) and \(y \)).

7 pts

(b) Find \(|\text{Jac}(G)| \). You may give your answer in terms of \(x \) and \(y \) or in terms of \(u \) and \(v \).

7 pts

(c) Calculate the following integral.

\[\iint_D 6x^3y \, dA \]