1. For each part, let R be the region bounded by the given curves. Graph the region R. Then use the Method of Washers to find the volume of the solid obtained by rotating R about the given axis.

(a) $y = (1 - x^2)^{-1/4}$, $x = \frac{1}{2}$ (region in first quadrant only); about x-axis
(b) $y = x, y = 2\sqrt{x}$; about x-axis
(c) $y = \ln(x), y = 2$, coordinate axes; about y-axis
(d) $y = e^{-x}, y = 1 - e^{-x}$, y-axis; about $y = 4$
(e) $y = 9/x^2, y = 10 - x^2$ (region in first quadrant only); about $x = -1$
(f) $y = \cosh(2), y = \cosh(x)$; about x-axis
(g) $y = \cosh(2), y = \cosh(x)$; about $x = 3$