1. For each series, determine whether it converges or diverges. For parts (c) and (d), your answer may depend on the values of \(p \) or \(x \).

(a) \[\sum_{n=1}^{\infty} \frac{(n!)^3}{(3n)!} \]

(b) \[\sum_{n=1}^{\infty} \left(1 + \frac{3}{n} \right)^{-n^2} \]

(c) \[\sum_{n=1}^{\infty} \frac{n^p}{n!} \text{ \((p \) constant)} \]

(d) \[\sum_{n=1}^{\infty} \frac{x^n}{n!} \text{ \((x \) constant)} \]

(e) \[\sum_{n=0}^{\infty} \frac{n!}{100^n} \]

(f) \[\sum_{n=1}^{\infty} \left(\frac{n}{3n + 1} \right)^n \]

(g) \[\sum_{n=0}^{\infty} \frac{(2n)!(2n)!}{n!(3n)!} \]

(h) \[\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{3^n n!} \]

(i) \[\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1)}{2^n n!} \]

2. Consider the series \(S(a) = \sum_{n=1}^{\infty} n!a^n n^{-n} \)

(a) Use Ratio Test to show that \(S(a) \) converges if \(|a| < e \) and diverges if \(|a| > e \). The test remains inconclusive for \(a = -e \) or \(a = e \).

(b) Determine whether \(S(e) \) converges.

(c) Determine whether \(S(-e) \) converges.

Hint: For parts (b) and (c), obviously you cannot use Ratio Test or Root Test since both tests are inconclusive. Instead, recall from lecture that if \(n \) is large enough then there is some constant \(C > 1 \) such that

\[n! \sim Cn^{n+1/2}e^{-n} \]

Note that this precisely means that

\[\lim_{n \to \infty} \left(\frac{n!}{n^{n+1/2}e^{-n}} \right) = C \]

This is known as Stirling’s approximation and can be proved using Calculus I. We need more advanced mathematics to show that \(C = \sqrt{2\pi} \).