1. For each series, determine whether it converges absolutely, converges conditionally, or diverges.

(a) \[\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{1/3}} \]
(b) \[\sum_{n=1}^{\infty} \frac{\cos(n)}{3^n} \]
(c) \[\sum_{n=1}^{\infty} (-1)^{n-1}n^{1/3} \]
(d) \[\sum_{n=1}^{\infty} (-1)^{n-1}n^2e^{-n^3/3} \]

2. You will need a calculator for parts (c) and (d).
Consider the series

\[S = 1 - \frac{1}{2^{0.2}} + \frac{1}{3^{0.2}} - \frac{1}{4^{0.2}} + \frac{1}{5^{0.2}} + \cdots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{0.2}} \]

(a) Show that \(S \) converges.
(b) Suppose we use the first five terms of the series (shown above) as an approximation of \(S \). What is the maximum error in our estimate, as guaranteed by the Alternating Series Approximation Theorem?
(c) Suppose we use the first \(N \) terms of the series as an approximation of \(S \). How large should \(N \) be to guarantee that the error in our estimate is at most \(0.5 \times 10^{-5} \) (i.e., accurate to 5 decimal places)?
(d) The most powerful computer today has a performance of about 200 petaFLOPS (i.e., about \(200 \times 10^{15} \) floating point operations per second). Suppose that the values of the \(N \) terms from part (c) were already calculated previously and stored in hard drive memory. Calculating the sum of these \(N \) terms then consists of \(N - 1 \) floating point operations (ignore the operations corresponding to table lookup). How long would it take for the most powerful computer to sum these \(N \) terms? Write your final answer in both seconds and days. (Yes, days.)