Strategies For Integration

7.1: Integration by Parts

\[\int u \, dv = uv - \int v \, du \]

Priority for choosing u:

L: logarithms
I: inverse trigonometric, inverse hyperbolic
A: algebraic
T: trigonometric, hyperbolic
E: exponential

7.2: Trigonometric Integrals

\[\int \sin^n(x) \cos^n(x) \, dx \]

(A) m odd (n anything)

- split off factor of \(\sin(x) \)
- rewrite remaining powers of \(\sin(x) \) in terms of \(\cos(x) \) using identity \(\sin(x)^2 = 1 - \cos(x)^2 \)
• use the substitution \(u = \cos(x) \)

(B) \(n \) odd \((m \) anything \)

• split off factor of \(\cos(x) \)

• rewrite remaining powers of \(\cos(x) \)
in terms of \(\sin(x) \) using identity
\[\cos(x)^2 = 1 - \sin(x)^2 \]

• use the substitution \(u = \sin(x) \)

(c) \(m \) and \(n \) both even

• rewrite entire integrand in terms of \(\sin(x) \) only or \(\cos(x) \) only
 using identity \(\cos(x)^2 + \sin(x)^2 = 1 \).

• if rewritten in terms of \(\sin(x) \)...

• use integration by parts with
 \(dv = \sin(x) \, dx \)

• in resulting integral, rewrite \(\cos(x)^2 \)
as \(1 - \sin(x)^2 \)

• algebraically solve for original integral.

• if rewritten in terms of \(\cos(x) \)...
• use integration by parts with
 \(dv = \cos(x) \, dx \)

• in resulting integral, rewrite \(\sin(x)^2 \) as \(1 - \cos(x)^2 \)

• algebraically solve for original integral.

\[
\int \tan(x)^m \sec(x)^n \, dx
\]

(A) Special cases (memorize)

• \(\int \tan(x) \, dx = \ln |\sec(x)| + C \)

• \(\int \sec(x) \, dx = \ln |\sec(x) + \tan(x)| + C \)

(B) \(m \) odd (\(n \) anything)

• split off factor of \(\sec(x) \tan(x) \)

• rewrite remaining powers of \(\tan(x) \) in terms of \(\sec(x) \) using identity

\(\tan(x)^2 = \sec(x)^2 - 1 \)
• use the substitution $u = \sec(x)$
 (C) n even and $n \neq 2$ (m anything)

• split off factor of $\sec(x)^2$

• rewrite remaining powers of $\sec(x)$ in terms of $\tan(x)$ using identity $
\sec(x)^2 = \tan(x)^2 + 1$

• use the substitution $u = \tan(x)$

(D) m even and n odd

• rewrite entire integrand in terms of $\sec(x)$ only using identity
\[\tan(x)^2 = \sec(x)^2 - 1 \]

• use integration by parts with
\[du = \sec(x)^2 \, dx \]

• in resulting integral, rewrite $\tan(x)^2$ as $\sec(x)^2 - 1$

• algebraically solve for original integral:
\[\int \cot(x)^m \csc(x)^n \, dx \]
(A) Special cases (memorize)
- \(\int \cot(x) \, dx = -\ln|\csc(x)| + C \)
- \(\int \csc(x) \, dx = -\ln|\csc(x) + \cot(x)| + C \)

(B) \(n \) odd (\(n \) anything)
- Split off factor of \(\csc(x) \cot(x) \)
- Rewrite remaining powers of \(\cot(x) \) in terms of \(\csc(x) \) using identity \(\cot(x)^2 = \csc(x)^2 - 1 \)
- Use the substitution \(u = \csc(x) \)

(C) \(n \) even and \(n \neq 2 \) (\(m \) anything)
- Split off factor of \(\csc(x)^2 \)
- Rewrite remaining powers of \(\csc(x) \) in terms of \(\cot(x) \) using identity \(\csc(x)^2 = \cot(x)^2 + 1 \)
- Use the substitution \(u = \cot(x) \)

(D) \(m \) even and \(n \) odd
• rewrite entire integrand in terms of \(\csc(x) \) only using identity \(\cot(x)^2 = \csc(x)^2 - 1 \)

• use integration by parts with
 \(dv = \csc(x)^2 \, dx \)

• in resulting integral, rewrite \(\cot(x)^2 \) as \(\csc(x)^2 - 1 \)

• algebraically solve for original integral.

7.3: Trigonometric Substitution

• Use trigonometric substitution for integrands with quadratic expressions under some integer power of a square root.

• Complete the square as necessary to obtain one of the following forms:

 \[
 \begin{cases}
 \sqrt{a^2-x^2} \\
 \sqrt{a^2+x^2} \\
 \sqrt{x^2-a^2}
 \end{cases}
 \] always assume \(a > 0 \).
• Use the table below as necessary:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Substitution</th>
<th>Identities</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{a^2-x^2})</td>
<td>(x = \sin(\theta)) (-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2})</td>
<td>(dx = a\cos(\theta),d\theta) (\sqrt{a^2-x^2} = a\cos(\theta))</td>
</tr>
<tr>
<td>(\sqrt{a^2+x^2})</td>
<td>(x = \tan(\theta)) (-\frac{\pi}{2} < \theta < \frac{\pi}{2})</td>
<td>(dx = a\sec^2(\theta),d\theta) (\sqrt{a^2+x^2} = a\sec(\theta))</td>
</tr>
<tr>
<td>(\sqrt{x^2-a^2})</td>
<td>(x = \sec(\theta)) (\theta \leq \frac{\pi}{2}) OR (\pi \leq \theta \leq \frac{3\pi}{2})</td>
<td>(dx = a\sec(\theta)\tan(\theta),d\theta) (\sqrt{x^2-a^2} = a\tan(\theta))</td>
</tr>
</tbody>
</table>

7.4: Integrals with Hyperbolic Functions

Note: Be sure to go over the “Hyperbolic Functions Review Sheet”.

(A) Substitution

(B) Integration by Parts

\(\rightarrow \text{When choosing } u, \text{ treat hyperbolic and inverse hyperbolic functions} \)
as you would treat trigonometric and inverse trigonometric functions

(C) Hyperbolic Integrals

\[\text{Treat powers of hyperbolic functions as you would treat trigonometric functions. The strategies are identical} \]

(D) Hyperbolic Substitution

\[\text{Similar to trigonometric substitution} \]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Trig. Substitution</th>
<th>Hyp. Substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\sqrt{a^2 - x^2}]</td>
<td>[x = \sin(\theta)]</td>
<td>[x = \tanh^{-1}(u)]</td>
</tr>
<tr>
<td>[\sqrt{a^2 + x^2}]</td>
<td>[x = \tan(\theta)]</td>
<td>[x = \sinh^{-1}(u)]</td>
</tr>
<tr>
<td>[\sqrt{x^2 - a^2}]</td>
<td>[x = \sec(\theta)]</td>
<td>[x = \cosh^{-1}(u)]</td>
</tr>
</tbody>
</table>

7.5: Method of Partial Fractions

- Partial fractions can be used for integrating any rational function

\[f(x) = \frac{P(x)}{Q(x)} \] \quad P and Q are polynomials with no common factors
• If \(\deg(P) \geq \deg(Q) \), perform long division first to write

\[
f(x) = \underbrace{R(x)} + \frac{r(x)}{Q(x)}
\]

polynomial of degree remainder term:
\(\deg(P) - \deg(Q) \quad \deg(r) < \deg(Q) \)

• Find the partial fraction decomposition (PFD) of the remainder term
 • Factor \(Q(x) \) into irreducible factors
 • \(ax + b \) OR
 • \(ax^2 + bx + c \) (with \(b^2 - 4ac < 0 \))

• Write \(\frac{r(x)}{Q(x)} \) as a sum of simple partial fractions. If a factor of \(Q(x) \) is repeated \(m \) times, then the PFD has \(m \) terms for that repeated factor.
• The numerator of each term should be one degree less than the corresponding factor of \(Q \).

Examples:

\[
\frac{1}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}
\]

\[
\frac{1}{(x-a)(x-b)^2} = \frac{A}{x-a} + \frac{B}{x-b} + \frac{C}{(x-b)^2}
\]

\[
\frac{1}{(x-a)(x^2+b^2)} = \frac{A}{x-a} + \frac{Bx+C}{x^2+b^2}
\]

• **Find the values of the unknown coefficients using algebra.**

• **Find the desired integral using the PFD.** For quadratic factors, split into two: one part uses substitution and the other uses trig. substitution \((x = a \tan(\theta))\)
Some common integrals that are useful to memorize:

\[
\int \frac{x}{x^2 + a^2} \, dx = \frac{1}{2} \ln (x^2 + a^2) + C
\]

\[
\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C
\]