1. Find the absolute maximum and absolute minimum values of \(f(x) = \frac{10x}{x^2 + 1} \) on the interval \([0, 2]\).

Solution

The function \(f \) is differentiable on all intervals. So the only critical numbers are those \(x \)-values such that \(f'(x) = 0 \).

\[
f'(x) = \frac{(x^2 + 1)(10) - (10x)(2x)}{(x^2 + 1)^2}
\]

\[
0 = \frac{10 - 10x^2}{(x^2 + 1)^2}
\]

\[
0 = 10 - 10x^2
\]

The only solution to the equation \(1 - x^2 = 0 \) in the interval \([0, 2]\) is \(x = 1 \). Checking the critical value and the endpoint values gives the following.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x) = \frac{10x}{x^2 + 1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

The maximum value of \(f \) on the interval \([0, 2]\) is 5 and the minimum value is 0.

2. For each part, determine whether the hypotheses of mean value theorem are satisfied by \(f \) on the given interval. Explain your answer.

(a) \(f(x) = \frac{x^2 - 5x}{x^3 + 1} \) on \([-2, 5]\)

(b) \(f(x) = |4x - 20| + \sin(4x) \) on \([-\pi, \pi]\)

Solution

(a) The function \(f \) is discontinuous (in fact, undefined) at \(x = -1 \). Since \(-1 \in [-2, 5]\), the function \(f \) does not satisfy the hypotheses of the MVT on \([-2, 5]\).

(b) The function \(f \) is continuous for all \(x \), but not differentiable at \(x = 5 \). Since \(5 \notin (-\pi, \pi) \), the function \(f \) does satisfy the hypotheses of the MVT on \([-\pi, \pi]\).