1. The total cost of producing x widgets is

$$C(x) = x^3 + 9x^2 + 18x + 200$$

and the selling price per unit is

$$p(x) = 45 - 2x^2$$

What is the optimal price? (That is, what price maximizes total profit?)

Solution

The total revenue is $R(x) = xp(x) = 45x - 2x^3$. Thus the marginal cost and marginal revenue are

$$MC(x) = 3x^2 + 18x + 18$$
$$MR(x) = 45 - 6x^2$$

Profit is maximized when $MC = MR$.

$$3x^2 + 18x + 18 = 45 - 6x^2$$
$$9x^2 + 18x - 27 = 0$$
$$9(x + 3)(x - 1) = 0$$

The only solution is $x = 1$ (production cannot be negative). Thus the optimal price is $p(1) = 43$. (Verification that $x = 1$ gives maximum profit is not required for cost-revenue problems.)

2. Suppose the total cost of producing x units is

$$C(x) = 2x^4 - 10x^3 - 18x^2 + x + 5$$

Find the smallest and largest values of marginal cost for $0 \leq x \leq 5$.

Solution

The marginal cost is

$$MC(x) = 8x^3 - 30x^2 - 36x + 1$$

To find the local extrema of $MC(x)$, we find the critical numbers of $MC(x)$. Since $MC(x)$ is a polynomial (and hence differentiable for all x), the only critical numbers are solutions to the equation $MC'(x) = 0$.

$$0 = MC'(x) = 24x^2 - 60x - 36 = 12(2x + 1)(x - 3) \iff x = 3$$

The minimum and maximum of $MC'(x)$ on the interval $[0, 5]$ must occur at either $x = 3$ or the endpoints.

$$MC(x) = 8x^3 - 30x^2 - 36x + 1 = (4x - 15)(2x^2 - 9) - 134$$

$$MC(0) = 1$$
$$MC(3) = -161$$
$$MC(5) = 71$$
Hence the minimum marginal cost is -161 and the maximum marginal cost is 71.

3. Suppose the total cost of manufacturing x widgets is

$$C(x) = 3x^2 + 5x + 75$$

What level of production minimizes the average cost per unit?

Solution

The average cost per unit is

$$AC(x) = \frac{C(x)}{x} = 3x + 5 + \frac{75}{x}$$

To minimize the average cost on the interval $(0, \infty)$, we find the critical numbers. Since $AC(x)$ is differentiable on $(0, \infty)$, the critical numbers are solutions to $AC'(x) = 0$.

$$0 = AC'(x) = 3 - \frac{75}{x^2} \implies x = 5$$

Now observe that $AC''(x) = \frac{150}{x^3} > 0$ for all $x > 0$. Hence the graph of $AC(x)$ is concave up on $(0, \infty)$, whence $x = 5$ gives the global minimum of $AC(x)$.

4. The value of a piece of land t years from now (in the dollars of that year) is

$$Q(t) = Q_0 t^{0.15} e^{0.2\sqrt{t}}$$

where $Q_0 = 100,000$. The prevailing effective annual interest rate is 5%, compounded continuously. How many years from now is the optimal time to sell the land? (That is, how many years from now is the present value of the land a maximum?)

Solution

The function $Q(t)$ gives the value of the land t years from now in that year. Hence the value of the land t years from now in today’s dollars is $P(t) = Q(t) e^{-rt}$ where $r = 0.05$. Hence we have

$$P(t) = Q_0 t^{0.15} e^{0.2\sqrt{t}-0.05t}$$

Since $P(t)$ is differentiable on $(0, \infty)$, the critical numbers of $P(t)$ are solutions to $P'(t) = 0$.

$$P'(t) = Q_0 t^{0.15} e^{0.2\sqrt{t}-0.05t} \left(0.1t^{-1/2} - 0.05\right) + Q_0 (0.15) t^{-0.85} e^{0.2\sqrt{t}-0.05t}$$

$$= Q_0 t^{-0.85} e^{0.2\sqrt{t}-0.05t} \left(t(0.1t^{-1/2} - 0.05) + 0.15\right)$$

$$= -0.05 Q_0 t^{-0.85} e^{0.2\sqrt{t}-0.05t} \left(2t^{1/2} - 0.05t + 1.5\right)$$

$$= -0.05 Q_0 t^{-0.85} e^{0.2\sqrt{t}-0.05t} \left(\sqrt{t} + 1\right) \left(\sqrt{t} - 3\right)$$

Hence the only solution to $P'(t) = 0$ is $t = 9$. Now we use first derivative test to verify that $t = 9$ really does give the maximum value. Note that the first few factors of $P'(t)$ are sign-definite,
regardless of the value of \(t \). That is,
\[
0.05Q_0 \varepsilon^{-0.85} \varepsilon^{0.2\sqrt{t-0.05t}} \delta \delta \left(\sqrt{t} + 1 \right) = \nabla
\]

So determining the sign of \(P'(t) \) reduces to finding the sign of \((\sqrt{t} - 3) \) only. Thus we have
\[
P'(1) = \bigoplus \cdot (1 - 3) = \bigoplus \bigoplus = \bigoplus
\]
\[
P'(16) = \bigoplus \cdot (4 - 3) = \bigoplus = \bigoplus
\]

This means \(P(t) \) is increasing on \([0, 9)\) and decreasing on \((9, \infty)\). Hence \(t = 9 \) gives the maximum value of \(P(t) \).

5. A tour agency is booking a tour and has 100 people signed up. The price of a ticket is $2000 per person. The agency has booked a plane seating 150 people at a cost of $125,000. Additional costs to the agency are incidental fees of $500 per person. For each $10 that the price is lowered, a new person will sign up. How much should the price be lowered for all participants to maximize the profit to the tour agency?

Solution
Let \(x \) be the number of people signed up and let \(p \) be the price of a ticket. Then \(p \) is a linear function of \(x \) (note the phrase “for each” in the problem). We know that \(p = 2000 \) if \(x = 100 \) and that \(\Delta x = 1 \) if \(\Delta p = -10 \). This means if we write \(p(x) = p_0 + m(x - x_0) \), we have the point \((x_0, p_0) = (100, 2000)\) and the slope \(m = -10 \). Hence
\[
p(x) = 2000 - 10(x - 100) = 3000 - 10x
\]
The total revenue and total cost for the agency are thus
\[
R(x) = xp(x) = 3000x - 10x^2 \\
C(x) = 125000 + 500x
\]
The total profit is maximized when marginal cost is equal to marginal revenue.
\[
MR = MC \implies 3000 - 20x = 500 \implies x = 125
\]
Note that we are maximizing the profit on the interval \(x \in [0, 150] \) since the plane holds at most 150 people. Since \(x = 125 \) is in the valid interval, \(x = 125 \) gives the maximum profit. (Cost-revenue problems do not require verification as long as the candidate level of production is in the valid interval.) The optimal price is thus \(p(125) = 3000 - 1250 = 1750 \). So the price should be lowered by $250.