1. For each function, do all of the following.
 - Find all vertical asymptotes and all horizontal asymptotes.
 - Find all first-order critical numbers.
 - Find where the function is increasing and where the function is decreasing.
 - Classify each critical value as a relative maximum, relative minimum, or neither.
 - Find all second-order critical numbers.
 - Find where the graph of \(y = f(x) \) is concave up and where it is concave down.
 - Identify any inflection points.
 - Sketch the graph of \(y = f(x) \).

 (a) \(f(x) = \frac{1}{3}x^3 - 9x + 2 \)
 (b) \(f(x) = (x + 1)^2(x - 5) \)
 (c) \(f(x) = \frac{x}{x^2 + 1} \)
 (d) \(f(x) = x - \sin(2x) \) on \([0, \pi]\)
 (e) \(f(x) = 1 + 2x + 18x^{-1} \)
 (f) \(f(x) = 1 - \frac{x}{4 - x} \)
 (g) \(f(x) = \sqrt[3]{x^3 - 48x} \)
 (h) \(f(x) = \ln(4 - x^2) \)

2. Sketch the graph of a function \(f \) that satisfies all of the following conditions.
 - \(f'(x) > 0 \) when \(x < 2 \) and when \(2 < x < 5 \)
 - \(f'(x) < 0 \) when \(x > 5 \)
 - \(f'(2) = 0 \)
 - \(f''(x) < 0 \) when \(x < 2 \) and when \(4 < x < 7 \)
 - \(f''(x) > 0 \) when \(2 < x < 4 \) and when \(x > 7 \)

3. For each part, calculate the limit or show that it does not exist. Show all work.

 (a) \(\lim_{x \to \infty} \left(\frac{3x - 5}{x + 1} \right) \)
 (b) \(\lim_{x \to -\infty} \left(\frac{3x}{\sqrt{4x^2 + 9}} \right) \)
 (c) \(\lim_{x \to 0^+} \left(\frac{x^2 - x + 4}{2x + \sin(x)} \right) \)
 (d) \(\lim_{x \to \infty} \left(\frac{(x - 3)(2x + 4)(x - 5)}{(3x + 1)(4x - 7)(x + 2)} \right) \)
 (e) \(\lim_{x \to -\infty} \left(\frac{(x - 3)(2x + 4)(x - 5)}{(3x + 1)(4x - 7)(x + 2)} \right) \)
 (f) \(\lim_{x \to 3^-} \left(\frac{2x^2 + 8}{x^2 - 9} \right) \)
4. Consider the function

\[f(x) = \frac{(x - 1)(2x + 5)}{(x + 1)(3x - 6)} \]

(a) Find all horizontal asymptotes of \(f \), if any.
(b) Find all vertical asymptotes of \(f \), if any.
(c) At each vertical asymptote of \(f \), find both corresponding one-sided limits.

5. Consider the function

\[f(x) = \frac{2e^x + 3}{1 - e^x} \]

(a) Find all horizontal asymptotes of \(f \), if any.
(b) Find all vertical asymptotes of \(f \), if any.
(c) At each vertical asymptote of \(f \), find both corresponding one-sided limits.

6. Sketch the graph of a function \(f \) that satisfies all of the following conditions.

- the lines \(y = 1 \) and \(x = 3 \) are asymptotes
- \(f \) is increasing for \(x < 3 \) and \(3 < x < 5 \), and \(f \) is decreasing elsewhere
- the graph of \(y = f(x) \) is concave up for \(x < 3 \) and for \(x > 7 \)
- the graph of \(y = f(x) \) is concave down for \(3 < x < 7 \)
- \(f(0) = f(5) = 4 \) and \(f(7) = 2 \)