1. For each part, find the absolute maximum and the absolute minimum of the function f on the given interval.

(a) $f(x) = x^4 - 8x^2$ on $[-3, 3]$
(b) $f(x) = x^3 + 3x^2 - 24x - 72$ on $[-4, 4]$
(c) $f(x) = \sqrt{x(x - 5)}^{1/3}$ on $[0, 6]$
(d) $f(x) = e^{-x} \sin(x)$ on $[0, 2\pi]$
(e) $f(x) = x(\ln(x) - 5)^2$ on $[e^{-4}, e^4]$
(f) $f(x) = \begin{cases} 9 - 4x, & x < 1 \\ -x^2 + 6x, & x \geq 1 \end{cases}$ on $[0, 4]$

Solution

(a) The function f is differentiable everywhere. So we solve $f'(x) = 0$.

$$0 = f'(x) = 4x^3 - 16x$$
$$0 = 4x(x - 2)(x + 2)$$

Hence the critical points are $x = -2, x = 0,$ and $x = 2$. Checking the critical values and the endpoint values gives the following.

$$f(x) = x^4 - 8x^2 = x^2(x^2 - 8)$$
$$f(-3) = 9$$
$$f(-2) = -16$$
$$f(0) = 0$$
$$f(2) = -16$$
$$f(3) = 9$$

The maximum value of f on $[-3, 3]$ is 9 and the minimum value is -16.

(b) The function f is differentiable everywhere. So we solve $f'(x) = 0$.

$$0 = f'(x) = 3x^2 + 6x - 24$$
$$0 = 3(x - 2)(x + 4)$$

Hence the critical points are $x = -4$ and $x = 2$. Checking the critical values and the endpoint values gives the following.

$$f(x) = x^3 + 3x^2 - 24x - 72 = (x^2 - 24)(x + 3)$$
$$f(-4) = (-8)(-1) = 8$$
$$f(2) = (-20)(5) = -100$$
$$f(4) = (-8)(7) = -56$$

The maximum value of f on $[-4, 4]$ is 8 and the minimum value is -100.

(c) The function f is not differentiable at $x = 5$, hence $x = 5$ is a critical point. To find the
other critical points we solve the equation $f'(x) = 0$.

$$0 = f'(x) = x^{1/2} \cdot \frac{1}{3}(x - 5)^{-2/3} + \frac{1}{2}x^{-1/2}(x - 5)^{1/3}$$

$$0 = \frac{1}{6}x^{-1/2}(x - 5)^{-2/3} (2x + 3(x - 5))$$

$$0 = \frac{1}{6}x^{-1/2}(x - 5)^{-2/3}(5x - 15)$$

Solving this equation thus gives $5x - 15 = 0$ (that is, $x = 3$). Checking the critical values and the endpoint values gives the following.

$$f(x) = x^{1/2}(x - 5)^{1/3}$$

$$f(0) = 0$$

$$f(3) = 3^{1/2}(-2)^{1/3} \quad \text{(negative number)}$$

$$f(5) = 0$$

$$f(6) = 6^{1/2} \quad \text{(positive number)}$$

The maximum value of f on $[0, 6]$ is $6^{1/2}$ and the minimum value is $3^{1/2}(-2)^{1/3}$.

(d) The function f is differentiable everywhere. So we solve $f'(x) = 0$.

$$0 = f'(x) = e^{-x} \cos(x) - e^{-x} \sin(x)$$

$$0 = e^{-x} (\cos(x) - \sin(x))$$

Solving this equation thus gives $\cos(x) - \sin(x) = 0$ (that is, $\tan(x) = 1$). In the interval $[0, 2\pi]$ the equation $\tan(x) = 1$ has solutions $x = \frac{\pi}{4}$ and $\frac{5\pi}{4}$. Checking the critical values and the endpoint values gives the following.

$$f(x) = e^{-x} \sin(x)$$

$$f(0) = 0$$

$$f \left(\frac{\pi}{4} \right) = e^{-\pi/4} \cdot \frac{1}{\sqrt{2}} \quad \text{(positive number)}$$

$$f \left(\frac{5\pi}{4} \right) = -e^{-5\pi/4} \cdot \frac{1}{\sqrt{2}} \quad \text{(negative number)}$$

$$f(2\pi) = 0$$

The maximum value of f on $[0, 2\pi]$ is $\frac{e^{-\pi/4}}{\sqrt{2}}$ and the minimum value is $-\frac{e^{-5\pi/4}}{\sqrt{2}}$.

(e) The function f is differentiable on its domain. So we solve $f'(x) = 0$.

$$0 = f'(x) = x \cdot 2 (\ln(x) - 5) \cdot \frac{1}{x} + (\ln(x) - 5)^2$$

$$0 = 2 (\ln(x) - 5) + (\ln(x) - 5)^2$$

$$0 = (\ln(x) - 5) (2 + \ln(x) - 5)$$

$$0 = (\ln(x) - 5) (\ln(x) - 3)$$
Solving this equation thus gives $\ln(x) - 5 = 0$ (that is, $x = e^5$) or $\ln(x) - 3 = 0$ (that is, $x = e^3$). The only critical point is thus $x = e^3$ (e^5 is not in the interval $[e^{-4}, e^4]$).

Checking the critical values and the endpoint values gives the following.

\[
f(x) = x (\ln(x) - 5)^2
\]
\[
f(e^{-4}) = e^{-4}(-4 - 5)^2 = \frac{81}{e^4}
\]
\[
f(e^3) = e^3(3 - 5)^2 = 4e^3
\]
\[
f(e^4) = e^4(4 - 5)^2 = e^4
\]

To determine which value is the largest and which is the smallest, we look at the ratios of the above values. We will use the fact that $2 < e < 4$.

\[
\frac{f(e^3)}{f(e^4)} = \frac{4e^3}{e^4} = \frac{4}{e} > \frac{e}{e} = 1
\]

Hence $f(e^3) > f(e^4)$. We also have

\[
\frac{f(e^4)}{f(e^{-4})} = \frac{e^4}{\frac{81}{e^4}} = \frac{e^8}{81} > \frac{2^8}{81} = \frac{256}{81} > 1
\]

Hence $f(e^4) > f(e^{-4})$. Putting this all together we find the following.

\[
4e^3 > e^4 > \frac{81}{e^4}
\]

The maximum value of f on $[e^{-4}, e^4]$ is $4e^3$ and the minimum value is $\frac{81}{e^4}$.

(f) First observe that f is continuous (the left-limit, right-limit, and function value are all equal to 5 at $x = 1$, the only suspicious point). So the extreme value theorem does apply to f on the interval $[0, 4]$.

The derivative of f is given by

\[
f'(x) = \begin{cases}
-4, & x < 1 \\
-2x + 6, & x > 1
\end{cases}
\]

The function f is not differentiable at $x = 1$. We may verify this by computing the following limit.

\[
f'(1) = \lim_{h \to 0} \left(\frac{f(1 + h) - f(1)}{h} \right) = \lim_{h \to 0} \left(\frac{f(1 + h) - 5}{h} \right)
\]

Since $f(1 + h)$ is defined differently depending on whether h is negative or positive, we
compute the one-sided limits.

\[
\lim_{h \to 0^-} \left(\frac{f(1 + h) - 5}{h} \right) = \lim_{h \to 0^-} \left(\frac{9 - 4(1 + h) - 5}{h} \right) = \lim_{h \to 0^-} \left(\frac{-4h}{h} \right) = \lim_{h \to 0^-} (-4) = -4
\]

\[
\lim_{h \to 0^+} \left(\frac{f(1 + h) - 5}{h} \right) = \lim_{h \to 0^+} \left(\frac{-(1 + h)^2 + 6(1 + h) - 5}{h} \right) = \lim_{h \to 0^+} \left(\frac{-h^2 + 4h}{h} \right) = \lim_{h \to 0^+} (-h + 4) = 4
\]

Since the two one-sided limits are not equal, \(f'(1) \) does not exist. This means \(x = 1 \) is a critical point of \(f \) on the interval \([0, 4]\).

To find any other critical point of \(f \) we solve the equation \(f'(x) = 0 \). Note that the “first piece” of \(f'(x) \) (i.e., \(-4\)) is never equal to 0. Hence we only set the “second piece” of \(f'(x) \) (i.e., \(-2x + 6\)) equal to 0. The equation \(-2x + 6 = 0\) has the solution \(x = 3 \). (Also observe that \(x = 3 \) lies in the interval \(x > 1 \), i.e., the valid \(x \)-values for the “second piece” of \(f'(x) \).)

Checking the critical values and endpoint values gives the following.

\[
f(x) = \begin{cases}
9 - 4x & , \quad x < 1 \\
-x^2 + 6x & , \quad x \geq 1
\end{cases}
\]

\[
f(0) = 9 \\
f(1) = 5 \\
f(3) = 9 \\
f(4) = 8
\]

The maximum value of \(f \) on \([0, 4]\) is 9 and the minimum value is 5.

2. A particle moves along the \(x \) axis with position

\[
x(t) = t^4 - 2t^3 - 12t^2 + 60t - 10
\]

Find the particle’s minimum velocity for \(0 \leq t \leq 3 \).

Solution

The velocity of the particle is

\[
v(t) = \frac{dx}{dt} = 4t^3 - 6t^2 - 24t + 60
\]

We must find the maximum value of \(v(t) \). Since \(v(t) \) is differentiable on all intervals, the critical points of \(v(t) \) are those values of \(t \) for which \(v'(t) = 0 \).

\[
0 = v'(t) = 12t^2 - 12t - 24 \\
0 = 12(t^2 - t - 2) = 12(t - 2)(t + 1)
\]
The only critical point is $t = 2$ (the value $t = -1$ is not in the interval $[0, 3]$). Now we check the values of v at the critical point and the endpoints of the interval.

\[
\begin{align*}
v(0) &= 60 \\
v(2) &= 20 \\
v(3) &= 42
\end{align*}
\]

Hence the particle’s minimum velocity is $v(2) = 20$.