1. Suppose the line described by $y = 5x - 9$ is tangent to the graph of $y = f(x)$ at $x = 4$.
 (a) Calculate $f(4)$. If there is not enough information to do so, explain why.
 (b) Calculate $f(3)$. If there is not enough information to do so, explain why.
 (c) Calculate $f'(4)$. If there is not enough information to do so, explain why.
 (d) Calculate $f'(3)$. If there is not enough information to do so, explain why.

2. Use the limit definition of the derivative to calculate the derivative of f at $x = 5$. Then find an equation for the line tangent to the graph of $y = f(x)$ at $x = 5$.
 (a) $f(x) = 2x - 1$
 (b) $f(x) = (2x - 1)^2$
 (c) $f(x) = \sqrt{2x - 1}$
 (d) $f(x) = \frac{1}{2x - 1}$
 (e) $f(x) = \frac{1}{\sqrt{2x - 1}}$
 (f) $f(x) = \frac{1}{\sqrt{2x - 1}}$

3. The graph of $y = f(x)$ is given below. Sketch a graph of $y = f'(x)$. Only the general shape is important. Do not worry about scales.

4. Consider the following function.
 $$f(x) = \begin{cases}
 -x^2, & x < 0 \\
 x^2 + 2x, & 0 \leq x < 1 \\
 6x - x^2 + c, & x \geq 1
 \end{cases}$$
 (a) Is f differentiable at $x = 0$?
 (b) Is there a value of c that makes f differentiable at $x = 1$? If so, calculate it. If not, explain why.