1. Determine all points where the following function is continuous.
Make sure you give a justification for any x-value at which you claim f is continuous.

\[f(x) = \begin{cases} 3x^2 - x + 1, & x < -2 \\ 15 + \sin(2\pi x), & -2 \leq x < 3 \\ 2x - 4, & 3 \leq x \end{cases} \]

2. Let \(f(x) = \frac{x^3 - 9x}{x + 3} \).

 (a) What is the domain of \(f \)?

 (b) Find all points where \(f \) is discontinuous.

 (c) For each \(x \)-value you found in part (b), determine what value should be assigned to \(f \), if any, to guarantee that \(f \) will be continuous there.

 (For example, if you claim \(f \) is discontinuous at \(x = a \), then you should determine the value that should be assigned to \(f(a) \), if any, to guarantee that \(f \) will be continuous at \(x = a \).)

3. Let \(f(x) = \frac{\sqrt{2x^2 + 1} - 1}{x^2(x - 3)} \).

 (a) What is the domain of \(f \)?

 (b) Find all points where \(f \) is discontinuous.

 (c) For each \(x \)-value you found in part (b), determine what value should be assigned to \(f \), if any, to guarantee that \(f \) will be continuous there.

 (For example, if you claim \(f \) is discontinuous at \(x = a \), then you should determine the value that should be assigned to \(f(a) \), if any, to guarantee that \(f \) will be continuous at \(x = a \).)

4. Find the values of the constants \(a \) and \(b \) that make the following function continuous for all real numbers.

 \[f(x) = \begin{cases} ax^2 - x, & x < 4 \\ 6, & x = 4 \\ x^3 + bx, & x > 4 \end{cases} \]

5. Find the values of the constants \(a \) and \(b \) that make the following function continuous for all real numbers. *You may assume \(a > 0 \).*

 \[f(x) = \begin{cases} \frac{1 - \cos(ax)}{x^2}, & x < 0 \\ 2a + b, & x = 0 \\ \frac{x^2 - bx}{\sin(x)}, & x > 0 \end{cases} \]

6. Prove that the equation \(\sqrt{x} + x^3 = 1 \) has a solution in the interval \([0, 1]\).

7. Prove that the equation \(x^4 + 3x^2 + 2 = 4x^3 + 8x \) has a solution.