1. At a certain factory, the total cost (in dollars) of manufacturing \(q \) tables during the daily production run is

\[
C(q) = 0.2q^2 + 10q + 900
\]

From experience, it has been determined that approximately

\[
q(t) = t^2 + 99t
\]

tables are manufactured during the first \(t \) hours of a production run. **Make sure to indicate the units of your answer in each question below.**

(a) Calculate \(C'(50) \) and explain its precise meaning.

(b) Compute the rate at which the total manufacturing cost is changing with respect to time one hour after production begins.

Solution

(a) We have that \(C'(q) = 0.4q + 10 \), whence \(C'(50) = 0.4 \cdot 50 + 10 = 20 \) with units of \$/table (dollars per table). This means that at the time when 50 tables have already been produced, the cost of producing more tables is $20 per table. (So if this rate were constant, then the 51st table would cost exactly $20.)

(b) Note that when \(t = 1 \), the total number of tables manufactured is \(q = 100 \). So now by the chain rule we have

\[
\left. \frac{dC}{dt} \right|_{t=1} = \left(\frac{dC}{dq} \right|_{q=100} \cdot \left(\frac{dq}{dt} \right|_{t=1})
\]

\[
= \left((0.4q + 10)\right|_{q=100} \cdot (2t + 99)|_{t=1})
\]

\[
= (40 + 10) \cdot (2 + 99) = 50 \cdot 101 = 5050
\]

So at one hour after production begins, the total manufacturing cost is changing at a rate of 5050 \$/hour (or $5050 per hour).

2. Calculate \(\frac{d}{dx} \left(4x^3 e^{\sin(2x)} \right) \). After computing the derivative, do not simplify your answer.

Solution

Use product rule. When differentiating the second factor, use chain rule twice.

\[
\frac{d}{dx} \left(4x^3 e^{\sin(2x)} \right) = 4x^3 \cdot e^{\sin(2x)} \cdot \cos(2x) \cdot 2 + 12x^2 \cdot e^{\sin(2x)}
\]