1. Consider the following function.

\[
f(x) = \begin{cases}
 x^3 + 27, & x \leq -3 \\
 \frac{x + 3}{2 - \sqrt{1-x}}, & -3 < x < 1 \\
 4, & x = 1 \\
 x^2 + 2x - 1, & 1 < x
\end{cases}
\]

(a) Find all points where \(f \) is discontinuous. Be sure to give a full justification here.

(b) For each \(x \)-value you found in part (a), determine what value should be assigned to \(f \), if any, to guarantee that \(f \) will be continuous there. Justify your answer.

(For example, if you claim \(f \) is discontinuous at \(x = a \), then you should determine the value that should be assigned to \(f(a) \), if any, to guarantee that \(f \) will be continuous at \(x = a \)).

Solution

(a) First note that \(x = -3 \) and \(x = 1 \) are suspicious points, and so we must check continuity there. For all other points, note that each piece individually is continuous on the given intervals. The first piece \((x^3 + 27) \) and third piece \((x^2 + 2x - 1) \) are continuous on all intervals because they are polynomials. The second piece \(\left(\frac{x + 3}{2 - \sqrt{1-x}} \right) \), however, is not continuous on all intervals. Instead, we must require that \(0 \leq 1 - x \) (or \(x \leq 1 \)) and \(2 - \sqrt{1-x} \neq 0 \) (or \(x \neq -3 \)). But both of these conditions are satisfied on the indicated interval \((-3 < x \leq 1) \).

Now we check each suspicious point. To guarantee continuity at \(x = a \), the left-limit, right-limit, and function value must all be equal at \(x = a \).

- \((x = -3) \):

\[
\lim_{x \to -3^-} f(x) = \lim_{x \to -3^-} (x^3 + 27) = (-3)^3 + 27 = 0 \\
\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} \left(\frac{x + 3}{2 - \sqrt{1-x}} \right) \\
= \lim_{x \to -3^+} \left(\frac{x + 3}{2 - \sqrt{1-x}} \cdot \frac{2 + \sqrt{1-x}}{2 + \sqrt{1-x}} \right) \\
= \lim_{x \to -3^+} \frac{(x + 3)(2 + \sqrt{1-x})}{4 - (1-x)} \\
= \lim_{x \to -3^+} \frac{(x + 3)(2 + \sqrt{1-x})}{x + 3} \\
= \lim_{x \to -3^+} (2 + \sqrt{1-x}) = 2 + \sqrt{1 - (-3)} = 4 \\
f(-3) = (x^3 + 27) \big|_{x=-3} = (-3)^3 + 27 = 0
\]

(Note that when calculating the right limit, we first rationalized the denom-
inator, then canceled common factors, and finally substituted $x = -3$.) Since these three numbers are not all equal, f is discontinuous at $x = -3$.

• ($x = 1$):

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left(\frac{x + 3}{2 - \sqrt{1 - x}} \right) = \frac{1 + 3}{2 - \sqrt{1 - 1}} = 2$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x^2 + 2x - 1) = 1^2 + 2(1) - 1 = 2$$

$f(1) = 4$

Since these three numbers are not all equal, f is discontinuous at $x = 1$.

In summary, we have found that f is continuous for all real numbers except $x = -3$ and $x = 1$.

(b) Since the one-sided limits at $x = -3$ are not equal, the two-sided limit $\lim_{x \to -3} f(x)$ does not exist. Hence it is not possible to assign a value to $f(-3)$ to make f continuous at $x = -3$.

The one-sided limits at $x = 1$ are equal, and so $\lim_{x \to 1^-} f(x) = 2$. Hence if we assign $f(1)$ the value of 2, then we would have $\lim_{x \to 1^+} f(x) = f(1)$, which means f would be continuous at $x = 1$.

2. Find all real solutions to the following equation.

$$\log_2(x) + \log_2(x - 3) = 2$$

Solution

Combine the logarithms using the identity $\log_a(x) + \log_a(y) = \log_a(xy)$. Then undo the logarithms by exponentiation, and solve the resulting equation.

$$\log_2(x) + \log_2(x - 3) = 2$$

$$\log_2(x(x - 3)) = 2$$

$$x(x - 3) = 2^2$$

$$x^2 - 3x - 4 = 0$$

$$(x - 4)(x + 1) = 0$$

Hence the two candidate solutions are $x = 4$ and $x = -1$. Now check these candidates in the original equation.

The candidate $x = 4$ gives the purported equation

$$\log_2(4) + \log_2(1) = 2$$

Since $\log_2(4) = 2$ and $\log_2(1) = 0$, this is a true equation. Hence $x = 4$ is a solution.
The candidate $x = -1$ gives the purported equation

$$\log_2(-1) + \log_2(-4) = 2$$

This is nonsense since the domain of $\log_a(x)$ is strictly positive x. That is, we cannot compute the logarithm of a negative number. So $x = -1$ is not a solution.

In summary, the only solution to the given equation is $x = 4$.