Section 4.3: Shapes of Graphs

* Be sure to review supplementary notes for Section 4.3: “Conceptual Background for Shapes of Graphs”

Ex. 1

Graph \(f(x) = x^3 - 12x^2 \) on \([-1, 9]\).

Solution:

\[
\begin{align*}
\quad f(x) &= x^3 - 12x^2 = x^2(x - 12) \\
\quad f'(x) &= 3x^2 - 24x = 3x(x - 8) \\
\quad f''(x) &= 6x - 24 = 6(x - 4)
\end{align*}
\]

1. **Information from** \(f(x) \):

 (Polynomials have no asymptotes)

2. **Information from** \(f'(x) \):

 First-order critical #’s:

 (Recall \(f'(x) = 3x(x - 8) \))

 * \(f'(x) \) does: none

 * \(f'(x) = 0 \): \(x = 0, x = 8 \)

Now construct sign chart for \(f'(x) \):
The shape of f is shown on the number line with signs indicating the behavior of f'. The equation for $f'(x)$ is given as $f'(x) = 3x(x-8)$. The sign of f' at specific points is tested:

- $f'(-1) = - - = +$
- $f'(1) = + - = -$
- $f'(9) = + + = +$

f is decreasing on $[0,8]$ and acceptable: $(0,8)$.

f is increasing on $(-\infty,0]$, $[8,\infty)$, and acceptable: $(-\infty,0) \cup (8,\infty)$.

Local min @ $x = 8$

Local max @ $x = 0$

Information from $f''(x)$:
- Second-order critical points: (Recall $f''(x) = 6(x-4)$)
- $f''(x)$ due: none
• $f''(x) = 0 : \ x = 4$

Now construct sign chart for $f''(x)$:

<table>
<thead>
<tr>
<th>x</th>
<th>$f''(x)$</th>
<th>Shape of f</th>
<th>Sign of f''</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>∞</td>
<td>$+$</td>
<td></td>
</tr>
</tbody>
</table>

$f''(x) = 6(x - 4)$

$f''(0) = \infty \ - \ - = -$

$f''(5) = \infty \ + \ + = +$

f is concave down on $(-\infty, 4]$

acceptable: $(-\infty, 4)$

f is concave up on $[4, \infty)$

acceptable: $(4, \infty)$

Inflection point(s) @ $x = 4$

Graph $y = f(x)$:

Recall $f(x) = x^2(x-12)$ on $[-1, 9]$

Important points on graph:

<table>
<thead>
<tr>
<th>x-value</th>
<th>y-value</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-13</td>
<td>endpoint</td>
</tr>
</tbody>
</table>
Summary of Info from f, f', and f'':

- **Local Max:** $(0,0)$
- **Inflection Point:** $(4,-128)$
- **Local Min:** $(8,-256)$

Inc/dec

- **Inc.**
- **Dec.**
- **Inc.**

Concave Up/Down

- **Concave Down**
- **Concave Up**
(Make sure to label important points. Graph does not have to be to scale.)

Ex. 2

Graph \(f(x) = x(x-2)^3 \) on \([-1, 3] \).

Solution:

\[
f(x) = x(x-2)^3
\]

\[
f'(x) = 1 \cdot (x-2)^3 + x \cdot 3(x-2)^2 \cdot 1
\]

\[
= (x-2)^2 (3x - 3)
\]

\[
= 2(2x-1)(x-2)^2
\]

\[
f''(x) = 2 \left[2 \cdot (x-2)^2 + (2x-1) \cdot 2(x-2) \cdot 1 \right]
\]

\[
= 2(x-2)(2x-2 + 2(2x-1))
\]

\[
= 12(x-2)(x-1)
\]

(Do not expand. Just use product rule.)

1. **Information from \(f(x) \):**

 (Polynomials have no asymptotes)

2. **Information from \(f'(x) \):**

 First-order critical \#'s:

 (Recall \(f'(x) = 2(2x-1)(x-2)^2 \))

 - \(f'(x) \) undefined: none
 - \(f'(x) = 0 \): \(x = \frac{1}{2}, x = 2 \)
Now construct sign chart for $f'(x)$:

- $f'(x) = 2(2x-1)(x-2)^2$
- $f'(0) = -$
- $f'(1) = +$
- $f'(3) = +$

f is decreasing on $(-\infty, \frac{1}{2}]$
f is increasing on $[\frac{1}{2}, \infty)$

Not two separate intervals!

Local min @ $x = \frac{1}{2}$
Local max @ nowhere

3 Information from $f''(x)$:

Second-order critical #s: (Recall $f''(x) = 12(x-2)(x-1)$)
- $f''(x)$ due: none
- $f''(x) = 0: x = 1, x = 2$
Now construct sign chart for $f''(x)$:

$$f''(x) = 12(x-2)(x-1)$$

- $f''(0) = + - - = +$
- $f''(1.5) = + - + = -$
- $f''(3) = + + + = +$

f is concave down on $[1, 2]$

f is concave up on $(-\infty, 1]$, $[2, \infty)$

Inflection point(s) @ $x = 1$, $x = 2$

4. Graph $y = f(x)$:

Recall $f(x) = x(x-2)^3$ on $[-1, 3]$

Important Points on Graph:

<table>
<thead>
<tr>
<th>x-value</th>
<th>y-value</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>27</td>
<td>endpoint</td>
</tr>
<tr>
<td>1/2</td>
<td>-27/16</td>
<td>local min</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>inflection point</td>
</tr>
</tbody>
</table>
Summary of Info from f, f', and f'':

<table>
<thead>
<tr>
<th>Inc/dec</th>
<th>Concave up/down</th>
</tr>
</thead>
<tbody>
<tr>
<td>dec.</td>
<td>concave up</td>
</tr>
<tr>
<td></td>
<td>concave up</td>
</tr>
<tr>
<td>increasing</td>
<td>conc. down</td>
</tr>
<tr>
<td></td>
<td>conc. up</td>
</tr>
</tbody>
</table>

Inflection point $(2, 0)$

Inflection point $(1, -1)$

Local min $(\frac{1}{2}, -\frac{27}{16})$

(Make sure to label important points. Graph does not have to be to scale.)
Ex. 3

Graph \(f(x) = \frac{x}{x^2 - 4} \).

Solution:

\[f'(x) = \frac{-(x^2+4)}{(x^2-4)^2}, \quad f''(x) = \frac{12x(x^2+12)}{(x^2-4)^3} \]

1. Information from \(f(x) \):
 - **Horizontal Asymptotes**:
 \[
 \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x}{x^2 - 4} = \lim_{x \to \infty} \left(\frac{x}{x^2} \cdot \frac{1}{1 - \frac{4}{x^2}} \right) = \lim_{x \to \infty} \left(\frac{1}{x} \cdot \frac{1}{1 - \frac{4}{x^2}} \right) = 0 \cdot \frac{1}{1-0} = 0
 \]
 \[
 \lim_{x \to -\infty} f(x) = 0 \text{ (same as previous calculation)}
 \]
 The only HA is \(y = 0 \).
 - **Vertical Asymptotes**
 (Look at where denominator is 0.
 \[x^2 - 4 = 0 \implies x = -2 \text{ or } x = 2. \])
\[
\lim_{x \to -2^-} \frac{x}{x^2-4} = \frac{2}{0^-} \cdot \infty = -\infty \quad \text{if } x \to -2^-, \ x^2-4 > 0
\]
\[
\lim_{x \to -2^+} \frac{x}{x^2-4} = \frac{-2}{0^+} \cdot \infty = +\infty \quad \text{if } x \to -2^+, \ x^2-4 < 0
\]

D.S. of \(x = -2 \) gives \(\frac{-2}{0} \) for both. So each limit is infinite. Positive or negative?

\[
\lim_{x \to 2^-} \frac{x}{x^2-4} = \frac{2}{0^-} \cdot \infty = -\infty \quad \text{if } x \to 2^-, \ x^2-4 < 0
\]
\[
\lim_{x \to 2^+} \frac{x}{x^2-4} = \frac{2}{0^+} \cdot \infty = +\infty \quad \text{if } x \to 2^+, \ x^2-4 > 0
\]

D.S. of \(x = 2 \) gives \(\frac{2}{0} \) for both. So each limit is infinite. Positive or negative?

So \(x = -2 \) and \(x = 2 \) are VA's.

2) Information from \(f'(x) \):

Recall: \(f'(x) = \frac{-(x^2+4)}{(x^2-4)^2} \)
First-order critical #’s

- \(f'(x) \) due: none \((x = \pm 2 \) not in domain of \(f \), so not critical #)

- \(f'(x) = 0: \ - (x^2 + 4) = 0 \)
 - no solution

New construct sign chart for \(f'(x) \):
- Critical #’s AND vertical asymptotes are cut points on sign chart.

\[f'(x) = \frac{-(x^2 + 4)}{(x^2 - 4)^2} \]

- \(f'(-3) = \frac{-\bigcirc}{\bigcirc} = 0 \)
- \(f'(0) = \frac{-\bigcirc}{\bigcirc} = 0 \)
- \(f'(3) = \frac{-\bigcirc}{\bigcirc} = 0 \)

\(f \) is decreasing on \((-\infty, -2), (-2, 2), (2, \infty) \)
f is increasing on no interval
f has local min @ no x-value
f has local max @ no x-value

3) Information from $f''(x)$:

Recall:
$$f''(x) = \frac{12x(x^2+12)}{(x^2-4)^3}$$

Second-order critical #’s:
- $f''(x)$ due: none
- $f''(x) = 0$: $12x(x^2+12) = 0$
 $$x = 0$$ only

New construct sign chart for $f''(x)$:
(Critical #’s AND vertical asymptotes are cut points on sign chart.)

Shape of f
Sign of f''
Test point

$f''(x) = \frac{12x(x^2+12)}{(x^2-4)^3}$
\[f''(-3) = \frac{-}{\color{red}+} = \color{red}{-}, \quad f''(1) = \frac{\color{red}+}{-} = \color{red}{-} \]
\[f''(-1) = \frac{-}{\color{red}+} = \color{red}{+}, \quad f''(3) = \frac{\color{red}+}{\color{red}+} = \color{red}{+} \]

\(f \) is concave down on \((-\infty, -2), (0, 2)\)
\(f \) is concave up on \((-2, 0), (2, \infty)\)
\(f \) has inflection point @ \(x = 0 \)

(Number inflection point at \(x = -2 \) or \(x = 2 \)!
The lines \(x = \pm 2 \) are vertical asymptotes)

4. Graph \(y = f(x) \).

Important features of Graph:

\((0, 0)\): inflection point
\(y = 0 \): horizontal asymptote
\(x = -2 \): vertical asymptote
\(x = 2 \): vertical asymptote

Summary of Info from \(f, f', f'' \):

\[
\begin{array}{cccccc}
& -\infty & & -2 & & 0 & & 2 & & \infty \\
\text{Inc/Dec.} & \text{dec.} & \leftarrow & \text{dec.} & \rightarrow & \text{dec.} \\
\end{array}
\]
Ex. 4

Graph \(f(x) = x^2 e^{-x} \).

Solution:

\[
\begin{align*}
 f'(x) &= x^2 e^{-x}(-1) + 2xe^{-x} = (2x-x^2)e^{-x} \\
 f''(x) &= (2x-x^2)e^{-x}(-1) + (2-2x)e^{-x} = (x^2-4x+2)e^{-x} \\
 &= ((x-2)^2-2)e^{-x}
\end{align*}
\]

1. **Information from \(f(x) \):**
 - Horizontal asymptotes
 \[
 \lim_{{x \to -\infty}} (x^2 e^{-x}) = (\infty)(0) = 0
 \]
\[
\lim_{x \to \infty} \left(x^2 e^{-x} \right) = \lim_{x \to \infty} \left(\frac{x^2}{e^x} \right) = \lim_{x \to \infty} \left(\frac{2x}{e^x} \right)
\]

indeterminate

\[
\lim_{x \to \infty} \left(\frac{2x}{e^x} \right) = \frac{2}{\infty} = 0
\]

The only H.A. is \(y = 0 \).

- Vertical asymptotes
 No V.A. since \(f(x) \) is continuous for all \(x \).

2) Information from \(f'(x) \):

Recall: \(f'(x) = x (2-x) e^{-x} \)

- Cut points for sign chart for \(f'(x) \):
 - \(f'(x) \) due: none
 - \(f'(x) = 0 \): \(x = 0 \), \(x = 2 \)

- Sign chart for \(f'(x) \):

 ![Sign chart for f'(x)](image)

 Shape of \(f \)

 Sign of \(f' \)

 Test point
\[f'(x) = x(2-x)e^{-x} \]

\[f'(-1) = -1 \quad + \quad + = + \]

\[f'(1) = + \quad + \quad + = + \]

\[f'(3) = + \quad - \quad + = - \]

\(f \) is decreasing on: \((-\infty, 0], [2, \infty)\)

\(f \) is increasing on: \([0, 2]\)

\(f \) has a local min at \(x = 0 \)

\(f \) has a local max at \(x = 2 \)

3) Information from \(f''(x) \):

Recall: \(f''(x) = ((x-2)^2 - 2)e^{-x} \)

- Cut points for sign chart for \(f''(x) \)
 - \(f''(x) \) due: none
 - \(f''(x) = 0: \ (x-2)^2 - 2 = 0 \)
 \[x = 2 + \sqrt{2} \quad \text{or} \quad x = 2 - \sqrt{2} \]

- Sign chart for \(f''(x) \):

\[
\begin{array}{cccccc}
0 & - & 2 - \sqrt{2} & + & 2 + \sqrt{2} & - \\
\end{array}
\]

Shape of \(f \)

Sign of \(f'' \)

Test point
\[f''(x) = ((x-2)^2 - 2) e^{-x} \]
\[f''(0) = (2^2 - 2) \bigcirc = \bigcirc \]
\[f''(2) = (0 - 2) \bigcirc = \bigcirc \]
\[f''(4) = (2^2 - 2) \bigcirc = \bigcirc \]

\(f \) is concave down on: \([2 - \sqrt{2}, 2 + \sqrt{2}]\)

\(f \) is concave up on: \((-\infty, 2 - \sqrt{2}],[2 + \sqrt{2}, \infty)\)

\(f \) has inflection points at \(x = 2 - \sqrt{2} \) and \(x = 2 + \sqrt{2} \)

4. **Graph** \(y = f(x) \)

- Important features of graph:
 - \(x = 0 \): local min
 - \(x = 2 - \sqrt{2} \): inflection point
 - \(x = 2 \): local max
 - \(x = 2 + \sqrt{2} \): inflection point
 - \(y = 0 \): horizontal asymptote (as \(x \to \infty \))

- Summary of Info from \(f, f', f'' \):

<table>
<thead>
<tr>
<th>(-\infty)</th>
<th>0</th>
<th>2 - (\sqrt{2})</th>
<th>2</th>
<th>2 + (\sqrt{2})</th>
<th>(\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>inc./dec.</td>
<td>dec.</td>
<td>inc.</td>
<td>dec.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>