1. Calculate $\lim_{x \to 5} \left(\frac{x^2 - 3x - 10}{x^2 - x - 20} \right)$. If the limit does not exist, write “DNE”.

Solution
Cancel common factors.

\[
\lim_{x \to 5} \left(\frac{x^2 - 3x - 10}{x^2 - x - 20} \right) = \lim_{x \to 5} \left(\frac{(x - 5)(x + 2)}{(x - 5)(x + 4)} \right) = \lim_{x \to 5} \left(\frac{x + 2}{x + 4} \right) = \frac{5 + 2}{5 + 4} = \frac{7}{9}
\]

2. Calculate $\lim_{x \to 0} \left(\frac{\sin^2(4x)}{x^2} \right)$. If the limit does not exist, write “DNE”.

Solution
Use the special limit $\lim_{\theta \to 0} \left(\frac{\sin(a\theta)}{a\theta} \right) = 1$.

\[
\lim_{x \to 0} \left(\frac{\sin^2(4x)}{x^2} \right) = \left(\lim_{x \to 0} \frac{\sin(4x)}{x} \right)^2 = \left(\lim_{x \to 0} \frac{\sin(4x)}{4x} \cdot 4 \right)^2 = (1 \cdot 4)^2 = 16
\]

3. Calculate $\lim_{x \to 4} \left(\frac{3 - \sqrt{2x + 1}}{x - 4} \right)$. If the limit does not exist, write “DNE”.

Solution
First rationalize the numerator.

\[
\lim_{x \to 4} \left(\frac{3 - \sqrt{2x + 1}}{x - 4} \right) = \lim_{x \to 4} \left(\frac{9 - (2x + 1)}{(x - 4)(3 + \sqrt{2x + 1})} \right) = \lim_{x \to 4} \left(\frac{-2(x - 4)}{(x - 4)(3 + \sqrt{2x + 1})} \right) = \lim_{x \to 4} \left(\frac{-2}{3 + \sqrt{9}} \right) = \frac{-2}{3 + 3} = \frac{-1}{3}
\]

4. Let $f(x) = \frac{\ln(x)}{10 - x^3}$. Calculate $f'(x)$. Do not simplify your final answer.

Solution
Use quotient rule.

\[
f'(x) = \frac{1}{x} \cdot (10 - x^3) - \ln(x) \cdot (-3x^2)
\]

5. Let $f(x) = \sqrt{\cos(3 + x^5)}$. Calculate $f'(x)$. Do not simplify your final answer.

Solution
Use chain rule twice.
\[f'(x) = \frac{1}{2} \left(\cos(3 + x^5) \right)^{-1/2} \cdot (-\sin(3 + x^5)) \cdot 5x^4 \]

6. Solve the inequality \(\frac{3x - 6}{x + 4} > 0 \). Write your answer using interval notation.

Solution
We solve the inequality using the method of sign charts. The cut points for our number line are \(x = 2 \) (obtained by solving \(3x - 6 = 0 \)) and \(x = -4 \) (obtained by solving \(x + 4 = 0 \)). Hence we examine each of the three subintervals: \((-\infty, -4) \), \((-4, 2) \), and \((2, \infty) \). We test the truth of the inequality on each of these subintervals by testing one \(x \)-value in each subinterval. Testing \(x = -5 \), \(x = 0 \), and \(x = 3 \), we find that the inequality is false only for \(x = 0 \). Hence the inequality is true for all \(x \) in the set \((-\infty, -4) \cup (2, \infty) \).

7. Find an equation of the line tangent to the graph of \(y = \tan(2x) \) at \(x = \frac{\pi}{8} \). Any form of the equation of a line is acceptable.

Solution
The tangent line must pass through the point \(\left(\frac{\pi}{8}, \tan\left(\frac{\pi}{4}\right) \right) = \left(\frac{\pi}{8}, 1 \right) \). Now we find the derivative using chain rule.
\[
 f'(x) = \sec(2x)^2 \cdot 2 \n\]
Hence the slope of the tangent line is \(f'(\frac{\pi}{8}) = 2 \sec\left(\frac{\pi}{4}\right)^2 = 4 \). The equation of the tangent line is:
\[
 y - 1 = 4 \left(x - \frac{\pi}{8} \right)
\]

8. Find all critical numbers of \(f(x) = 2 - (x^2 - 2x)^{1/3} \) in the interval \((-\infty, \infty) \). If there are no critical numbers, write “NONE”.

Solution
Critical numbers come in two types: where \(f'(x) \) does not exist or where \(f'(x) = 0 \). First note that since \(g(x) = x^{2/3} \) is not differentiable at \(x = 0 \), \(f(x) \) is not differentiable when \(x^2 - 2x = 0 \) (i.e., at both \(x = 0 \) and \(x = 2 \)). Now we solve \(f'(x) = 0 \).
\[
 0 = f'(x) = -\frac{2x - 2}{3(x^2 - 2x)^{2/3}} \Rightarrow x = 1
\]
Hence \(f(x) \) has three critical numbers: \(x = 0 \), \(x = 1 \), and \(x = 2 \).

9. Let \(f(x) = 2x^2 - 5x + 7 \). Use the limit definition of the derivative to calculate \(f'(x) \). If you simply quote a derivative rule without using the limit definition, you will receive no credit.
Solution

Start with the definition of derivative and compute the limit using algebra.

\[f'(x) = \lim_{h \to 0} \left(\frac{f(x + h) - f(x)}{h} \right) = \lim_{h \to 0} \left(\frac{2(x + h)^2 - 5(x + h) + 7 - (2x^2 - 5x + 7)}{h} \right) \]

\[= \lim_{h \to 0} \left(\frac{2x^2 + 4xh + 2h^2 - 5x - 5h + 7 - 2x^2 + 5x - 7}{h} \right) = \lim_{h \to 0} \left(\frac{4xh + 2h^2 - 5h}{h} \right) \]

\[= \lim_{h \to 0} \left(\frac{h(4x + 2h - 5)}{h} \right) = \lim_{h \to 0} (4x + 2h - 5) = 4x - 5 \]

12 pts 10. Find the absolute extreme values of \(f(x) = x + \frac{9}{x} \) on \([1, 18]\).

Solution

We first find the critical numbers of \(f \). Since \(f \) is differentiable on its domain, all critical numbers satisfy \(f'(x) = 0 \).

\[0 = f'(x) = 1 - \frac{9}{x^2} \implies x = -3 \text{ or } x = 3 \]

The only critical number in the interval \((1, 18)\) is \(x = 3 \). Now we compare the critical values and the endpoint values: \(f(1) = 10 \), \(f(3) = 6 \), and \(f(18) = 18.5 \). Hence on the interval \([1, 18]\), the absolute minimum value of \(f \) is 6 and the absolute maximum value is 18.5.

12 pts 11. Find all points on the graph of \(y = x \ln(x) \) where the tangent line is horizontal.

Solution

A horizontal line has slope 0 and the slope of the tangent line is given by the derivative. Hence we must solve the equation \(f'(x) = 0 \).

\[0 = f'(x) = 1 + \ln(x) \implies x = e^{-1} \]

Hence the point on the graph with a horizontal tangent is \((e^{-1}, e^{-1} \ln(e^{-1})) = (e^{-1}, -e^{-1})\).

12 pts 12. Find the absolute extreme values of \(f(x) = (6 - x)e^x \) on \([0, 6]\). \(Hint: 2 < e < 3 \).

Solution

We first find the critical numbers of \(f \). Since \(f \) is differentiable on its domain, all critical numbers satisfy \(f'(x) = 0 \).

\[0 = f'(x) = (5 - x)e^x \implies x = 5 \]

The only critical number in the interval \((0, 6)\) is \(x = 5 \). Now we compare the critical values and the endpoint values: \(f(0) = 6 \), \(f(5) = e^5 \), and \(f(6) = 0 \). Hence on the interval \([0, 6]\),
the absolute minimum value of f is 0 and the absolute maximum value is e^5.

13. Find the values of a and b that make f continuous at $x = 1$ or determine that no such values of a and b exist.

$$f(x) = \begin{cases}
-3x + ax^2, & x < 1 \\
b, & x = 1 \\
4ax - 1, & x > 1
\end{cases}$$

You must show all work and use proper calculus methods and notation to receive full credit. Your explanation must be clear and coherent.

Solution

First we calculate the left-limit, right-limit, and function value at $x = 1$.

$$\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (-3x + ax^2) = -3 + a$$
$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (4ax - 1) = 4a - 1$$
$$f(1) = b$$

To make f continuous at $x = 1$, the left-limit, right-limit, and function value at $x = 1$ must all be equal. Hence we must have

$$-3 + a = 4a - 1 = b$$

Solving for a in $-3 + a = 4a - 1$ gives $a = -2/3$, and then solving for b in $4a - 1 = b$ gives $b = -11/3$.
