Book #1 of 2

Name: ________________________________

ID# (last 4 digits): ____________________ Section: ________________________________

Unless stated otherwise, you must show all work clearly using proper notation and explain
your reasoning in English where appropriate. Answers must be justified using techniques that
have been taught in this course, and answers without such justification may receive less than
full credit – or no credit at all – even if the answer is correct.

This exam is closed book. Calculators, electronic devices, notes, books, formula sheets, and
other outside materials are not allowed. Phones must be turned off and put away.

Unless otherwise stated, give exact answers: e.g., write π and $\sqrt{2}$ instead of 3.14 and 1.41.
However, when an expression simplifies to a well-known value, you must use that value. For
example, you must write 1 instead of e^0, and you must write $\frac{1}{2}$ instead of $\cos\left(\frac{\pi}{3}\right)$.

This exam has 7 questions, printed in 1 booklet(s), for a total of 100 points.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Note: This problem continues onto the next page.

A scientist measures the temperature T (measured in kelvins) of a certain metal bar t seconds after the measurements have begun. The following equation models the data observed by the scientist.

$$T(t) = \frac{30}{e^t} + 10e^t$$

All final answers must be integers or simplified fractions with proper units.

(a) Calculate $T'(\ln(3))$ and explain its meaning in the context of this problem.

$$T'(\ln(3)) = \text{_______________________}$$

(b) Describe in plain English, as precisely and specifically as you can, what the quantity $Q = T(273) - T(152)$ represents in the context of this problem.
The scientist also observes that the length L of the metal bar (measured in centimeters) depends on its temperature through the following equation.

$$L(T) = 0.01T^3 + \frac{64,000}{T}$$

All final answers must be integers or simplified fractions with proper units.

(c) Calculate $L'(40)$ and explain its meaning in the context of this problem.

$$L'(40) = $$

(d) At what rate is the length of the bar changing with respect to time exactly $\ln(3)$ seconds after the measurements begin?

rate of change:
2. Note: This problem continues onto the next page.

For each limit, calculate the value or show that it does not exist. Show all work.

(a) \[\lim_{u \to 4} \left(\frac{(u + 6)^2 - 25u}{u - 4} \right) \]

value of limit: ________________

(b) \[\lim_{s \to 1} g(s) \] where \(g \) is the function \(g(s) = \begin{cases} \sqrt{1 - s} & , \ s \leq 1 \\ \frac{s^2 - s}{s - 1} & , \ s > 1 \end{cases} \)

value of limit: ________________
Note: This is a continuation of the problem on the previous page.

For each limit, calculate the value or show that it does not exist. Show all work.

(c) \[\lim_{h \to 0} \left(\frac{\sin(7 + h) - \sin(7)}{h} \right) \]

Hint: Recall the limit definition of the derivative!

value of limit: _______________

(d) \[\lim_{x \to 6} \left(\frac{\frac{1}{36} - x^{-2}}{x^2 - 36} \right) \]

value of limit: _______________
3. The position of a particle along the x-axis at time t is given by

$$x(t) = t^3 - 6t^2 + 9t + 10$$

(a) When is the particle retreating? When is the particle advancing?

Write your answer using interval notation.

retreating: __________________

advancing: __________________

(b) What is the total distance traveled by the particle during the period $0 \leq t \leq 7$? *(The table below shows selected values of the position.)*

Write your answer as an integer or simplified fraction.

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(t)$</td>
<td>10</td>
<td>14</td>
<td>12</td>
<td>10</td>
<td>14</td>
<td>30</td>
<td>64</td>
<td>122</td>
</tr>
</tbody>
</table>

distance traveled: ________________
This page is for scratch work. Do not detach this sheet.
This page is for scratch work. Do not detach this sheet.
Book #2 of 2

Name: ________________________________

ID# (last 4 digits): ___________________ Section: _____________________________

Unless stated otherwise, you must show all work clearly using proper notation and explain your reasoning in English where appropriate. Answers must be justified using techniques that have been taught in this course, and answers without such justification may receive less than full credit – or no credit at all – even if the answer is correct.

This exam is closed book. Calculators, electronic devices, notes, books, formula sheets, and other outside materials are not allowed. Phones must be turned off and put away.

Unless otherwise stated, give exact answers: e.g., write π and $\sqrt{2}$ instead of 3.14 and 1.41. However, when an expression simplifies to a well-known value, you must use that value. For example, you must write 1 instead of e^0, and you must write $\frac{1}{2}$ instead of $\cos\left(\frac{\pi}{3}\right)$.

This exam has 7 questions, printed in 1 booklet(s), for a total of 100 points.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
4. Find the values of a and b which would make the following function continuous at $x = 0$.

$$f(x) = \begin{cases}
\frac{4 - \sqrt{16 + 49x^2}}{ax^2}, & x < 0 \\
-23, & x = 0 \\
\frac{\tan(2bx)}{x}, & x > 0
\end{cases}$$

Write “does not exist” for your answer if appropriate. Otherwise, your answers should be integers or simplified fractions. You must use calculus to give a full, clear justification for your answer.

value of a: ______________

value of b: ______________
5. Let \(f(x) = \frac{1}{3}x^3 \) and let \(g(x) = x^2 + 15x - 3 \). Find all values of \(a \) for which the tangent lines to \(y = f(x) \) and \(y = g(x) \) at \(x = a \) are parallel.

value(s) of \(a \): ______________________

6. Calculate \(f'(x) \) where \(f \) is the function below.

\[
f(x) = \left(\frac{x^8 \sin(3x)}{\ln(x) - \ln(11)} \right)^{2/3}
\]

After calculating the derivative, do not simplify your answer.
7. Suppose f and g are differentiable for all x. For each part, use the table below or explain why there is not enough information.

<table>
<thead>
<tr>
<th></th>
<th>$f(x)$</th>
<th>$f'(x)$</th>
<th>$g(x)$</th>
<th>$g'(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>-4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>-3</td>
<td>2</td>
<td>-4</td>
</tr>
<tr>
<td>2</td>
<td>-4</td>
<td>3</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>

(a) Let $F(x) = \frac{f(x)}{g(x)}$. Calculate $F'(0)$.

$$F'(0) = \text{________________}_$$

(b) Let $G(x) = f\left(xg(x)\right)$. Calculate $G'(1)$.

$$G'(1) = \text{________________}_$$
This page is for scratch work. Do not detach this sheet.
This page is for scratch work. Do not detach this sheet.