Name:
ID# (last 4 digits):
Section:

- Please explain your answers clearly and show all work in the space provided. I reserve the right to give no credit for a response with no work even if the final answer is correct.

- You are not allowed the use of any calculator, unapproved formula sheet, or electronic device.

- All electronic devices must be turned off.

- Unless noted otherwise, all final answers should be exact.

- You have 70 minutes to complete the exam.

- This exam has 8 questions, printed in 2 booklets, for a total of 100 points.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Find an equation of the line tangent to the graph of $y = 2x^2 - 3x + 1$ at $x = 1$.

2. Show that the equation

 $$x^{2/3} = 2x^2 + 2x - 2$$

 has at least one solution in the interval $[0, 1]$. Explain your answer.
3. Find all real solutions to the following equation.

\[2 \ln(x) = \ln \left(\frac{x^5}{5 - x} \right) - \ln \left(\frac{x^3}{2 + x} \right)\]

4. Find the values of the constants \(a\) and \(b\) so that the following function is continuous for all \(x\). If this is not possible, explain why.

\[f(x) = \begin{cases}
ax + b & , \ x < 1 \\
-2 & , \ x = 1 \\
3\sqrt{x} + b & , \ x > 1
\end{cases}\]

You must give a full, clear justification for your answer. You must use proper methods taught in this course.
5. On the set of axes provided below, sketch the graph of a function $f(x)$ that satisfies all of the following properties.

- the domain of f is all real numbers
- $\lim_{x \to -4^+} f(x) = f(-4)$
- f is not continuous at $x = -4$
- $\lim_{x \to 1} f(x)$ exists
- f is not continuous at $x = 1$
- f is continuous at $x = 5$
- f is not differentiable at $x = 5$
Please explain your answers clearly and show all work in the space provided. I reserve the right to give no credit for a response with no work even if the final answer is correct.

You are not allowed the use of any calculator, unapproved formula sheet, or electronic device.

All electronic devices must be turned off.

Unless noted otherwise, all final answers should be exact.

You have 70 minutes to complete the exam.

This exam has 8 questions, printed in 2 booklets, for a total of 100 points.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
6. For each part, calculate \(f'(x) \).

After calculating the derivative, do not simplify your answer.

(a) \(f(x) = \frac{7x^3}{3x^{1/2}x^5} \)

(b) \(f(x) = -\cos(x) \ln(x) \)

(c) \(f(x) = \frac{\csc(x) + 4x^3}{e^x - e^5} \)
7. The parts of this question are independent of each other.

(a) Given the function \(g(x) \), state the definition of \(g'(x) \).

(b) Let \(f(x) = \sqrt{6x + 1} \). Calculate \(f'(1) \) directly from the definition. Show all work.

If you simply quote a rule, you will receive no credit. You must use the definition of derivative.
8. For each limit, calculate the value or show that it does not exist. Show all work.

(a) \(\lim_{x \to 7} \left(\frac{\frac{1}{7} - \frac{1}{x}}{x - 7} \right) \)

(b) \(\lim_{x \to 0} \left(\frac{\sin(7x)}{\tan(2x)} \right) \)

(c) \(\lim_{x \to -1} \left(\frac{|x + 1|}{x + 1} \right) \)