Oral Qualifying Exam Syllabus
for James Holland

Exam Date: 2019-04-30
Exam Committee: Eric Allender,
Gregory Cherlin,
Grigor Sargsyan (chair), and
Simon Thomas.

1. Set Theory
 i. Basic Set Theory
 • König’s theorem;
 • generalized Δ-system lemma;
 • Shoenfield’s absoluteness theorem;
 • the constructible hierarchy, $L \not\models \diamond + \text{GCH}$;
 • Suslin’s problem: \diamond denies SH, and $\text{MA} + \neg \text{CH}$ implies SH;
 • existence of an \aleph_1-Aronszajn tree.
 ii. Advanced Set Theory
 • Forcing theorems, chain conditions, closure conditions;
 • forcing CH, $\neg \text{CH}$, and \diamond;
 • product forcing;
 • iterated forcing, consistency of ZFC + MA + CH;
 • Cohen forcing;
 • Easton forcing;
 • measurable cardinals, elementary embeddings, and ultrapowers.

2. Model Theory
 • Completeness, compactness, Löwenheim–Skolem, Łoś–Vaught, Tarski–Vaught theorems and tests;
 • quantifier elimination;
 • omitting types theorem;
 • atomic, and prime models;
 • saturated models;
 • homogeneous models;
 • indiscernibles;
 • ω-stable theories;
 • \aleph_0-categoricity, Morley’s categoricity theorem;
 • Morley rank, transcendentals.

3. Recursion Theory
 • Primitive recursive, and recursive functions;
 • recursively enumerable sets;
 • the recursion theorem;
 • relative computability;
 • the arithmetic hierarchy;
 • Turing degrees;
 • simple, and complete sets.