Contents

Chapter I. Background
1. Terminology 1
2. Calculus Review 2
3. Complex Numbers Review 3
4. Worked-Out Examples 6

Chapter II. First-Order, Differential Equations
1. Basics ... 11
2. Linear Equations 14
3. Separable and Autonomous Equations 17
4. Exact Equations 19
5. Examples and Exercises 21

Chapter III. Discrete Problems
1. First-order difference equations 23
2. Euler's Method 23
3. Examples and Exercises 26

Chapter IV. Second-Order, Linear, Differential Equations
1. Homogeneous Equations 29
2. Non-Homogeneous Equations 32
3. Examples and Exercises 36

Chapter V. Using Linear Algebra
1. Gaussian Elimination 41
2. Matrices 45
3. Linear Algebra 46
4. Examples and Exercises 50

Chapter VI. Linear Systems of Differential Equations
1. Homogeneous Systems with Constant Coefficients 54
2. Non-Homogeneous Systems 57
3. Linearization 58
4. Examples and Exercises 61

Appendix A. Unnecessary Proofs
65
Chapter I. Background

Section I.1. Terminology

It’s very important to know some of the common words used in talking about mathematical problems, and equations in particular. Many students think of an equation merely as something to be solved, or the start of a pre-determined procedure. More than a crutch to get through the class, this conception fundamentally cripples their ability to learn more advanced topics.

To start at the very basics, an equation is a statement. Like any statement, it can be either true or false. For example,

1. the equation \(y = 5 \) is true when \(y \) is 5, but is false when \(y \) is 4;
2. the equation \(2y + 1 = 1 \) is only true when \(y = 0 \);
3. the equation \(2y + y = 3y \) is true for all \(y \);
4. the equation \((y - 1)(y + 2) = 0\) is true for \(y = 1 \) and for \(y = -2 \);
5. the equation \(y + 1 = y \) is never true.

To say that something solves an equation means that it makes the equation true. Similarly, something satisfies some condition or statement if that statement is true of it. Something witnesses that a statement is true, if that statement is true of it. These are all different words for the same thing. A solution is just something that solves the equation.

So, returning to (4) above, we might say that \(y = 1 \) is a solution to the equation, or that \(y = -2 \) witnesses that \((y - 1)(y + 2) = 0\). We might say that (5) above has no solution.

If we can describe all the possible solutions, this description is the general solution. Otherwise, we might only know a couple solutions, known as particular solutions. For example, \(7x^3 + 2x^2 - 100x = 0 \) has a particular solution \(x = 0 \), and the general solution is hard to find. \((x - 1)(x + 1) = 0\) has a general solution of \(x = \pm 1 \), where \(x = 1 \) and \(x = -1 \) are both particular solutions.

So solving an equation is just finding out when that equation is true. This is done through logic and reasoning. Many students, however, are not very good at this, and fail to understand that mathematics is about giving an argument, just as intelligible and legible as any other. This means complete sentences, and giving reasons. For example, consider the following line of flawed reasoning that attempts to show why \(2y + y = 3y \) is always true:

1. \(2y + y = 3y \).
2. Factor out a \(y \): \((2 + 1)y = 3y\).
3. Divide by \(y \): \(2 + 1 = 3 \).
4. Simplify: \(3 = 3 \) ✓

Such reasoning is mind-bogglingly wrong. Consider an analogous line of reasoning in plain English: I’m trying to show that all horses are animals.

1. All horses are animals.
2. For any horse, it is an animal.
3. Since all horses are animals, an animal is an animal, which we know is true.

Clearly this doesn’t show that all horses are animals. The issue is that it assumes at the beginning what it wants to show, and then concludes what we already knew. A proper line of reasoning would be the following:
Section I.2. Calculus Review

There are two fundamental rules for calculating derivatives: the chain rule, and the product rule. As a kind of inverse operation, these correspond to two rules of integration: u-substitution, and integration by parts respectively.

§ I.2.A. Differentiation

In most circumstances, differentiation relies on two rules and a few memorized derivatives.

I.2.A • 1. Result 1 (the chain rule)

Let \(f \) and \(g \) be two differentiable functions, each with one input. Therefore the composition \(h(x) := f(g(x)) \) has a derivative \(h'(x) \) given by

\[
 h'(x) = f'(g(x)) \cdot g'(x).
\]

There is a useful mnemonic to remember this result:

\[
 \frac{df}{dx}f(g) = \frac{df}{dg} \frac{dg}{dx},
\]

where the \(dgs \) “cancel out”. This mnemonic isn’t super helpful in practice, however, as it doesn’t tell you where these functions are evaluated. More properly, it should be written as in the chain rule.

Along with the chain rule is the product rule.

I.2.A • 2. Result 2 (the product rule)

Let \(f \) and \(g \) be two differentiable functions, each with one input. Therefore the product \(h(x) := f(x) \cdot g(x) \) has a derivative \(h'(x) \) given by

\[
 h'(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x).
\]

Both of these results should be very familiar to you, and they allow you to calculate the derivatives of complicated expressions just through syntactical manipulation. Often this happens without any actual thought required beyond remembering a few derivatives. In particular, the following will be important.

I.2.A • 3. Result 3

You should know

1. \(\frac{d}{dx}e^x = e^x \), i.e. \(e^x \) isn’t changed by differentiation;
2. \(\frac{d}{dx}x^n = nx^{n-1} \) for any fixed number \(n \) like 3, \(\pi \), \(\sqrt{1/2} \), etc.;
3. \(\frac{d}{dx}\ln|x| = \frac{1}{x} \);
4. \(\frac{d}{dx}\sin x = \cos x \); and
5. \(\frac{d}{dx}\cos x = -\sin x \).
§I.2.B. Integration

Anyone who has taken calculus knows that Integration is much harder than differentiation. In practice, integration relies on two major rules, which are just the reverse of the differentiation rules: u-substitution, and integration by parts. The easier of the two methods is substitution.

I.2.B • 1. Result 4 (u-substitution)

Let \(f \) and \(u \) be smooth functions, each with one input. Therefore

\[
\int_a^b f(u(x)) \cdot u'(x) \, dx = \int_{u(a)}^{u(b)} f(u) \, du.
\]

This again helps show where exactly these things are evaluated, so that if we’re instead taking the indefinite integral, it’s not hard to see that \(\int f(u(x)) \cdot u'(x) \, dx \) is just \(F(u(x)) \) where \(F = \int f \, dx \).

The more difficult to master method of integration is integration by parts, a kind of inverse of the product rule. This is difficult partly because the form is less intuitive, but also because it requires more choice and calculation. Often one will need to do several attempts just to get the right choice of functions that allows the integral to be done easily. Occasionally, some further algebra is needed to get the value.

I.2.B • 2. Result 5 (integration by parts)

Let \(f \) and \(g \) be smooth functions, each with one input. Therefore

\[
\int_a^b f'(x) \cdot g(x) \, dx = f(x) \cdot g(x)]_a^b - \int_a^b f(x) \cdot g'(x) \, dx.
\]

As we can see above, there’s no change from where we’re evaluating the functions, so there is then no harm in stating the indefinite case as just

\[
\int f'g \, dx = fg - \int fg' \, dx.
\]

The difficulty then comes in choosing which function one wants to be \(f' \) as opposed to \(g \). This method requires that intuition, but also the ability to calculate the derivatives of these functions as well as their integrals, and then integrating their product.

Problems like these are the bread and butter of integration exercises. But often, integrals can be calculated in a slightly more direct way using complex numbers. Not all the time, of course, but in certain cases as we will see.

Section I.3. Complex Numbers Review

If the real numbers can be viewed as a line, the complex numbers can be viewed as a plane:
This means any complex number \(z \) is written as \(z = a + bi \), where \(a \) is referred to as the real part of \(z \), and \(b \) is the imaginary part of \(z \). In notation, \(z = \text{Re}(z) + i \cdot \text{Im}(z) \).

And as with any other coordinate plane, we can represent any two points by cartesian coordinates, or by polar coordinates. For example, \(-1 + i\) is written in a kind of cartesian form: the sum of its real \((-1)\) and imaginary \((1)\) parts: \(p = (-1) + 1 \cdot i \). Alternatively, we can view any point \(p \) in \(\mathbb{C} \) by its angle with the (positive) real axis, and distance from 0.

Complex numbers can be brought about and defined in many ways: as a vector space, as an algebraic closure, as a quotient, and so on. The value \(i \) can be viewed as being anywhere from merely a formal symbol with no inherent connection to the real world to being a fundamental aspect in the algebra of even the real numbers. For our purposes, we have the following definitions.

I.3.1. Definition 1

Extend the real numbers \(\mathbb{R} \) with a value \(i \) that satisfies \(i^2 = -1 \).

An imaginary number is a quantity \(ai \) for a real number \(a \).

A complex number is a quantity \(a + bi \) for real numbers \(a \) and \(b \). The set of complex numbers is \(\mathbb{C} \).

For \(z = a + bi \) a complex number,
- the real part of \(z \) is \(\text{Re}(z) = a \).
- The imaginary part of \(z \) is \(\text{Im}(z) = b \).
- The absolute value or magnitude of \(z \) is \(|z| = \sqrt{a^2 + b^2} \), a real number.
- The conjugate of \(z \) is \(\overline{z} = a - bi \).

The (multiplicative) inverse of a complex number \(z \) is a complex number \(s \) where \(s \cdot z = 1 \). If such an \(s \) exists, it’s called \(1/z \).

Note that since \(s \cdot 0 = 0 \neq 1 \), this means 0 has no multiplicative inverse—i.e. we can’t divide by 0. Writing \(z = a + bi \) yields that

\[
\frac{1}{z} = \frac{1}{a + bi} \cdot \frac{a - bi}{a - bi} = \frac{a - bi}{a^2 - b^2 i^2} = \frac{a - bi}{a^2 + b^2} = \frac{\overline{z}}{|z|^2}.
\]

Instead of the cartesian form \(a + bi \), we can also represent complex numbers in polar form: \(re^{i\theta} \). Proving this requires working with whatever definition of \(e \) one prefers. So when working with sines and cosines, Euler’s formula is a must-have.

I.3.2. Result 6 (Euler’s formula)

For any \(\theta \), \(e^{i\theta} = \cos \theta + i \sin \theta \).

The usual exponentiation laws still hold: \(e^x e^y = e^{x+y} \). And so when \(n \) is an integer, \((e^x)^n = e^{x \cdot n} \).

But note that logarithms now require a choice, e.g. \(e^{\pi i} = -i = e^{3\pi i} \), so we must choose whether \(\ln i \) is \(\pi i \) or \(3\pi i \) (or any of the other odd multiples of \(\pi i \)). Similarly, taking roots requires more choice than before, e.g. \(1^4 = (-1)^4 = i^4 = (-i)^4 = 1 \), so we must be careful in taking the fourth root of 1, for example. As it turns out, such a choice is rarely important for our purposes, just as it is in the real case or in functions like \(\tan^{-1} \).

Returning to Euler’s formula, this implies \(|e^{i\theta}| = 1 \) for all \(\theta \). Furthermore, this gives a quick way to verify some trigonometric equalities, e.g.

\[
(e^{i\theta})^2 = (\cos \theta + i \sin \theta)^2 = \cos^2 \theta - \sin^2 \theta + i 2 \sin \theta \cos \theta
\]
\[e^{i2\theta} = \cos(2\theta) + i \sin(2\theta). \]

Equating the real and imaginary parts yields that
\[\cos(2\theta) = \cos^2 \theta - \sin^2 \theta, \]
and
\[\sin(2\theta) = 2 \sin \theta \cos \theta. \]

The central question when a new concept is brought up like this is “what good is it?” The answer for our purposes is mostly the ease of calculating integrals. This is accomplished by reducing the many hard-to-remember trigonometric identities to easy-to-confirm identities about \(e^z \) for complex \(z \), and by being able to factor any polynomial. For example, the double (and triple, half, etc.) angle formulas for \(\sin \) and \(\cos \) are easy to confirm using Euler’s formula. Following easily from Euler’s formula are the following important identities.

1.3.3. Result 7

For every real number \(\theta \) and \(x \),

1. \[\frac{d}{dx} x^i = i \cdot x^i; \]

2. \[\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta}) = \text{Re}(e^{i\theta}); \]

3. \[\sin \theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta}) = \text{Im}(e^{i\theta}); \]

This means that we can easily turn powers of \(\cos \theta \) and \(\sin \theta \) into powers and sums of \(e^{i\theta} \) and \(e^{-i\theta} \), which can be far more easy to integrate, as we’ll see later. But beyond integration and \(e \), the use of \(\mathbb{C} \) is its ability to factor polynomials: *any* polynomial can be factored into factors of the form \((x - c) \) with \(c \) complex.

In \(\mathbb{R} \), the polynomial \(x^2 + 4 \) cannot be factored. In \(\mathbb{C} \), however, it can be rewritten as \(x^2 - (2i)^2 \), which we know can be factored into \((x + 2i)(x - 2i) \). The fact that any polynomial can be factored into terms of the form \((x - c) \) is what makes the complex numbers so nice to work with in the context of algebra. As another example, we can find cube roots of 1 (that aren’t just 1). Using cartesian coordinates, this is difficult:

\[z^3 = 1 \iff z^3 - 1 = 0 \iff (z - 1)(1 + z + z^2) = 0. \]

Factoring \(1 + z + z^2 \) isn’t obvious. Using the polar idea is much easier:

\[z^3 = 1 \iff (re^{i\theta})^3 = 1 \iff r^3 e^{i3\theta} = 1 \iff r^3 = 1 \text{ and } 3\theta = 2\pi k \text{ for some } k \text{ in } \mathbb{Z}. \]

Hence the solutions are \(z = e^{2\pi ik/3} \) for \(k \) in \(\mathbb{Z} \), which yields three solutions in total.
First, let’s calculate some integrals with traditional calculus methods.

I.4.1. Example 1

Calculate \(\int e^{3x} \, dx \).

Solution ..:

Here our choice of \(f' \) and \(g \) aren’t super clear, right? We need to fill out a table:

\[
\begin{array}{c|c|c}
f' & e^{3x} & f = \frac{1}{3} e^{3x} \\
g' & 1 & g = x \\
\end{array}
\]

Using this, can calculate by integration by parts (I.2.B • 2)

\[
\int e^{3x} \, dx = \int f' g \, dx = fg - \int fg' \, dx \\
= \frac{1}{3} xe^{3x} - \int \frac{1}{3} e^{3x} \, dx = \frac{1}{3} xe^{3x} - \frac{1}{9} e^{3x}.
\]

I.4.2. Example 2

Calculate \(\int x^2 \sin x \, dx \).

Solution ..:

Here our choice of \(f' \) and \(g \) are a little less clear, in that it doesn’t seem so immediate what to choose. We again need to fill out a table:

\[
\begin{array}{c|c|c}
f' & \sin x & f = -\cos x \\
g' & 2x & g = x^2 \\
\end{array}
\]

Using this, can calculate by integration by parts (I.2.B • 2)

\[
\int x^2 \sin x \, dx = \int f' g \, dx = fg - \int fg' \, dx \\
= (-\cos x)x^2 - \int -2x \cos x \, dx.
\]

At this point, it’s not entirely clear how to integrate \(\int x \cos x \, dx \). So we will need to use integration by parts (I.2.B • 2) again: first we fill out a table:

\[
\begin{array}{c|c|c}
u' & \cos x & u = \sin x \\
v' & 1 & v = x \\
\end{array}
\]

And so we can calculate \(\int x \cos x \, dx \) (and from there \(\int -2x \cos x \, dx \) to yield \(\int x^2 \sin x \, dx \)) through

\[
\int x \cos x \, dx = \int u' v \, dx = uv - \int u' v' \, dx \\
= x \sin x - \int \sin x = x \sin x + \cos x.
\]

Using this in the above calculation, we get

\[
\int x^2 \sin x \, dx = (-\cos x)x^2 - \int -2x \cos x \, dx \\
= -x^2 \cos x + 2(x \sin x + \cos x) \\
= -(2 - x^2) \cos x + 2x \sin x.
\]
Using complex numbers and functions is very natural. Integrals that traditionally might have required remembering a trigonometric identity and using it cleverly can be made much more straightforward through the use of complex functions and Euler’s formula $(I.3 \cdot 2)$. For example, consider the integral of $\cos^2 x$. Normally, you would need to use the trigonometric identity $\sin^2 x = 1 - \cos^2 x$. But if this was forgotten, a reasonable approach would be the following.

I.4 • 3. Example 3

Calculate $\int \cos^2 x \, dx$.

Solution:

Here our choice of f' and g is pretty clear: both should be $\cos x$. But then we need to fill out a table:

<table>
<thead>
<tr>
<th>f'</th>
<th>f</th>
<th>g'</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\cos x$</td>
<td>$\sin x$</td>
<td>$-\sin x$</td>
<td>$\cos x$</td>
</tr>
</tbody>
</table>

Hence we get

$$
\int \cos^2 x \, dx = \int f'g \, dx
= fg - \int fg' \, dx
= \sin x \cos x - \int \sin x(-\sin x) \, dx
= \sin x \cos x + \int \sin^2 x \, dx.
$$

Now we want to find the integral of $\int \sin^2 x \, dx$. So we again must do integration by parts, and fill out a table:

<table>
<thead>
<tr>
<th>h'</th>
<th>h</th>
<th>k'</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin x$</td>
<td>$-\cos x$</td>
<td>$\cos x$</td>
<td>$\sin x$</td>
</tr>
</tbody>
</table>

Hence we get

$$
\int \sin^2 x \, dx = \int h'k \, dx = hk - \int hk' \, dx
= -\cos x \sin x - \int (-\cos x) \cos x \, dx
= -\sin x \cos x + \int \cos^2 x \, dx.
$$

Plugging this back into our formula for $\int \cos^2 x \, dx$ gives us nothing new:

$$
\int \cos^2 x \, dx = \sin x \cos x - \sin x \cos x + \int \cos^2 x \, dx = \int \cos^2 x \, dx.
$$

We can see that this approach fails. But where this method failed, using Euler’s formula $(I.3 \cdot 2)$ works.

I.4 • 4. Example 4

Calculate $\int \cos^2 x \, dx$.

Solution:

Recall that $\cos x = \frac{1}{2}(e^{ix} + e^{-ix})$. Hence when we square, we get the sum of easily integrable functions:

$$
\int \cos^2 x \, dx = \int \left(\frac{1}{4}(e^{ix} + e^{-ix})^2\right) \, dx
= \int \frac{1}{4}(e^{2ix} + 2 + e^{-2ix}) \, dx
$$
In simplifying this, we can either use Euler’s formula (I.3 • 2), or recognize \(\sin 2x \) inside there. Either way gives the same result:

\[
\int \cos^2 x \, dx = \frac{1}{4} (\sin(2x) + 2x) + c = \frac{1}{4} \sin(2x) + \frac{1}{2}x + c.
\]

Of course, if one did remember the trigonometric identity, this way seems a little more involved. But a simple change from \(\cos^2 x \) to \(\cos^3 x \), or higher, makes the problem even more difficult when going the trigonometric route. Even if computationally tedious, using Euler’s formula (I.3 • 2) is much more straightforward. We can consider another example comparing the two methods.

\[
\begin{align*}
I.4 \cdot 5. & \quad \text{Example 5} \\
\text{Calculate } & \int e^x \sin x \, dx.
\end{align*}
\]

\textbf{Solution} .:.

Unlike the previous example, we don’t need to remember many trigonometric identities to use the traditional method. We do, however, need to have some creativity and intuition about what to do. Using integration by parts, we will fill out the table

\[
\begin{align*}
\int f'g - fg' & = f & g = e^x \\
\int f'g - fg' & = f & g = e^x
\end{align*}
\]

Hence we have the equality

\[
\int e^x \sin x \, dx = \int f'g - fg' = \int f'g - \int fg' = -e^x \cos x + \int e^x \cos x \, dx.
\]

Now we need to calculate \(\int e^x \cos x \, dx \). Again, the only real option available to us is integration by parts. Now we must again make some decisions on how to proceed, the second place intuition is required.

\[
\begin{align*}
u' & = \cos x & u = \sin x \\
\int u'v - uv' & = uv & \int uv'
\end{align*}
\]

Hence we have the equality

\[
\int e^x \cos x \, dx = \int u'v \, dx = uv - \int uv' = e^x \sin x - \int e^x \sin x \, dx.
\]

At this point, it may appear that we’re stuck: in trying to calculate \(\int e^x \sin x \, dx \), it seems like we need to have already calculated it. In the third occurrence of intuition, we can realize the equality our first use of integration by parts gave us:

\[
\begin{align*}
\int e^x \sin x \, dx & = -e^x \cos x + \int e^x \cos x \, dx \\
& = -e^x \cos x + e^x \sin x - \int e^x \sin x \, dx \\
\therefore & \int e^x \sin x \, dx = e^x \cos x + e^x \sin x + c.
\end{align*}
\]

The +c comes from the fact that we’re using indefinite integrals: the \(\int e^x \sin x \, dx \) on the left may differ from \(\int e^x \sin x \, dx \) on the right by a constant. But the important thing is that we found our answer through a long process.

A method which is much more mechanical, requiring fewer choices, and less intuition, is the following method:
I.4 • 6. Example 6

Calculate \(\int e^x \sin x \, dx \).

Solution:

We can use either the identity of \(\sin x = \text{Im}(e^{ix}) \), or \(\sin x = \frac{1}{2i} \left(e^{i\theta} - e^{-i\theta} \right) \). Either will work, but to showcase a different method, we’ll consider the identity \(\sin x = \text{Im}(e^{ix}) \), as witnessed by Euler’s formula (I.3 • 2). The is the only part of the calculation which requires some intuition. But what it means is that

\[
\int e^x \sin x \, dx = \int e^x \text{Im}(e^{ix}) \, dx = \text{Im} \left(\int e^x e^{ix} \, dx \right)
\]

So the work of calculating the integral is already done. The only work left is just expanding definitions and so forth to find the imaginary part. This means that we need to put the inside part \(\frac{1}{1+i} e^{z(1+i)} \) into that cartesian form \(a + bi \). Through the usual methods of expanding, using Euler’s formula (I.3 • 2), and getting square roots out of the denominator,

\[
\frac{1}{1+i} e^{z(1+i)} = \frac{1}{1+i} \cdot \frac{1 - i}{1 - i} e^{ix}
\]

\[
= \frac{1 - i}{1 - i^2} e^{ix}
\]

\[
= e^x \frac{1 - i}{2} (\cos x + i \sin x)
\]

\[
= \frac{1}{2} e^x (\cos x + i \sin x \cos x + \sin x)
\]

\[
= \frac{1}{2} e^x (\cos x + \sin x) + \frac{1}{2} e^x (\sin x - \cos x).
\]

This is of the form \(a + bi \), and so its imaginary part is \(\frac{1}{2} e^x (\sin x - \cos x) \), which means

\[
\int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + c.
\]

So unlike the traditional method, there was only one creative decision: to use either \(\text{Im}(e^{ix}) \) or Euler’s formula (I.3 • 2) at the start. Everything else was just simplifying and using one memorized integral: \(\int e^{ax} = e^{ax} / a + c \).

Now for an example of the use of complex numbers in factoring.

I.4 • 7. Example 7

Factor \(x^4 + 3 \) (the professor wants you to realize that things don’t always come out as nice integers).

Solution:

Note that the factors \((x - c)\) of \(x^4 + 3 \) have \(c^4 + 3 = 0 \). So we’re looking for solutions to \(x^4 + 3 = 0 \), i.e. \(z^4 = -3 \), for \(z \) in \(\mathbb{C} \). In polar form, we’re trying to find \(r \geq 0 \) and \(\theta \) where

\[
z^4 = (re^{i\theta})^4 = r^4 e^{4i\theta} = -3.
\]

Writing \(-3 = 3 \cdot e^{i\pi}\), we can equate the magnitudes and angles (modulo \(2\pi \)). So we must have

\[
|z^4| = r^4 = 3 = |-3|,
\]

and

\[
4\theta = \pi + 2\pi k, \text{ for some } k \text{ in } \mathbb{Z}.
\]

Now the only real numbers with \(r^4 = 3 \) are +\(\sqrt{3} \) and -\(\sqrt{3} \). As \(r \) must be positive, it must be \(\sqrt{3} \). Hence our
solutions are $\sqrt[3]{3}e^{i(1+2k)\pi/4}$ for k as 0, 1, 2, and 3.

Returning to the original question, the factorization is then

$$x^4 + 3 = \left(x - \sqrt[3]{3}e^{i\pi/4} \right) \left(x - \sqrt[3]{3}e^{i3\pi/4} \right) \left(x - \sqrt[3]{3}e^{i5\pi/4} \right) \left(x - \sqrt[3]{3}e^{i7\pi/4} \right).$$

I.4 • 8. Example 8

Use Euler’s formula to write e^{2-3i} in the form $a + bi$ for a and b real numbers.

Solution:

$$e^{2-3i} = e^2 e^{-3i} = e^2 (\cos(-3) + i \sin(-3)) = e^2 \cos 3 - ie^2 \sin 3.$$

I.4 • 9. Example 9

Use Euler’s formula to write 2^{1-i} in the form $a + bi$ for a and b real numbers.

Solution:

$$2^{1-i} = 2 \cdot 2^{-i} = 2e^{-i\ln(2)} = 2(\cos(-\ln 2) + i \sin(-\ln 2)) = 2 \cos(\ln 2) - i \cdot 2 \sin(\ln 2).$$
Chapter II. First-Order, Differential Equations

Section II.1. Basics

Unknowingly, you’ve come across differential equations before in calculus. One of the simplest differential equations would be \(y’ = 0 \), which implies that \(y \) is just a constant. Similarly, if \(y’ = a \) for some constant \(a \), we get that \(y(t) = at + c \) for some constant \(c \). Thus the solution to \(y’ = a \) is not unique: for different \(c \), we get different \(y = at + c \) satisfying the differential equation. In general, we’ve seen the differential equation \(y’ = f(t) \), in which case the general solution is the (indefinite) integral of \(f \).

To generalize this, we will consider what happens when \(y \) itself is related to its derivative. This means differential equations of the form \(y’ = f(t, y) \) for some function \(f \) of \(t \) and \(y \). Note that there might not be any solutions to an arbitrary differential equation. For example, \(y’ = y’ + 1 \) has no solution for \(y \). Equations are statements about functions, and so are sometimes true and sometimes false. Our goal is to find out when they are true. This can be done by examining the equations themselves. Again, let’s consider equations of the form \(y’ = f(t, y) \) for some function \(f \). Using this, we can see what \(y’ \) would need to be if a solution \(y \) had a value \(y_0 \) at \(t_0 \). Plotting this gives a direction field.

§ II.1.A. Direction fields

Direction fields are primarily a visual aid in that they give a general idea how any given solution to a differential equation behaves. You can think of these fields as acting like currents of a river: if you plop in at some initial value, the path the direction field carries you is the solution with that initial value. These fields are easily displayed when we have \(y’ \) equal to an expression involving just \(y \) and \(t \):

\[
y’ = f(t, y),
\]

for some function \(f \). The idea is that each point \((a, b)\) in the \(ty\)-plane then has a corresponding direction it goes according to the above equation. In practice, this means drawing a small line with slope \(f(a, b) \) at \((a, b)\).

Again, this is mostly a visual aid, allowing you to see at a glance whether solutions will tend towards a certain value or not just by starting from a variety of initial values, and following the lines of the diagram. For example, consider the differential equation \(y’ = y^2 + \frac{1}{2}y - \frac{1}{2}t - 1 \). If we consider the values of \(y’ \) when \(y \) and \(t \) are between \(-3\) and \(3\), we can get a variety of slopes. These slopes are then used as the slopes of arrows, giving the direction field below. Two solutions are also plotted to show what the solutions look like.

\(^1\) In particular, this \(c \) is just \(y(0) = a \cdot 0 + c = c \).

\(^2\) Later results tell us that there is in fact only one such solution (when \(f \) is continuously differentiable with respect to \(y \)) with that initial value, so the use of “the” here is appropriate.
There are many different solutions to this differential equation, like most, since any given solution might have different \textit{initial values}. For example, \(y' = 1 \) has solutions \(t \), but also \(t + 2 \), and \(t + c \) for any \(c \). Remembering constants of integration will turn out to be very important here. Whereas in previous calculus courses such a constant wasn’t very important, here it can be crucial.

\section*{II.1.B. Descriptions of differential equations}

Sometimes it’s easy to solve certain kinds of differential equations. As such, it’s useful to have names to reference such equations. Additionally, working with a smaller subset of differential equations can be easier than dealing with them in general. The same holds for us. For our purposes, we have the following concepts and descriptions.

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{II.1.B • 1. Definition 2} \\
\hline
A differential equation \\
1. is ordinary iff it doesn’t involve partial derivatives. \\
2. is partial iff it involves partial derivatives. \\
3. is 7th order iff it involves the 7th derivative (without any higher derivatives). \\
\hline
\end{tabular}
\end{table}

The first kinds of differential equations we will be looking at will be \textit{separable}, and \textit{linear}.

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{II.1.B • 2. Definition 3} \\
\hline
A differential equations is separable iff it is of the form (or at least can be put in the form) \[y' = f(t)g(y), \]
for some functions \(f \) and \(g \). \\
\hline
\end{tabular}
\end{table}

A general process for solving separable equations is then to divide by \(g(y) \), yielding \(y'/g(y) = f(t) \). Integrating then gives an equations involving just \(y \) and \(t \), with no derivatives.

\begin{table}[h]
\centering
\begin{tabular}{|l|}
\hline
\textbf{II.1.B • 3. Definition 4} \\
\hline
A differential equation is linear iff it is of the form (or at least can be put in the form) \[a_0(t)y + a_1(t)\frac{dy}{dx} + \cdots + a_n(t)\frac{d^n y}{dx^n} = g(t), \]
for some functions \(g, a_0, \cdots, a_n \). \\
\hline
\end{tabular}
\end{table}

One simple test to see whether an equation is linear is to see whether there are any terms like \(y' \cdot y \) or \(y'' \cdot y' \). If there are—and you can’t just divide by or subtract them to remove them from both sides—then the equation is not linear. Over time, we will look at more types of differential equations.

\section*{II.1.C. Initial value problems}

As above, there can be many solutions to a differential equation. Specifying an initial value just means specifying the solution. Usually, you can end up with a general form for the solution involving some unknowns like a + \(c \) from an integral:
\[y(t) = f(t, c), \]
for some function \(f \). If this is the general solution, specifying the initial value \(y(0) = y_0 \) requires \[y_0 = f(0, c), \]
which often is enough to uniquely identify \(c \). Note that 0 isn’t particularly special, as we could just as easily specify the value at 1, \(y(1) = y_1 \), and so require \(c \) to satisfy \[y_1 = f(1, c). \]
Either way, solving for c—and plugging this back into the general form—gives us an explicit way to calculate y for any value of t.

§II.1.D. Two simple initial value problems

One of the simplest examples of interaction between y' and y is just equality.

$$y' = y.$$

This equation is both separable, and linear, and so the solutions of this can be found just by dividing by y and then integrating. If $y \neq 0$ somewhere, then

$$\frac{y'}{y} = 1 \quad \Leftrightarrow \quad \int \frac{1}{y} \, dy = 1 \quad \Leftrightarrow \quad \ln |y| + C_1 = t + C_2 \quad \Leftrightarrow \quad \ln |y| = t + C_3 \quad |y| = e^{t+C_3} = e^{C_3}e^t.$$

By choosing a new constant

$$C = \begin{cases} e^{C_3} & \text{if } y > 0 \text{ somewhere} \\ -e^{C_3} & \text{if } y < 0 \text{ somewhere} \\ 0 & \text{if } y = 0 \text{ somewhere} \end{cases}$$

we can get rid of the absolute value around y to get the equality

$$y = Ce^t,$$

for some constant C. In fact, note that $y(0) = Ce^0 = C$, so that we can actually say $y = y(0)e^t$. Such a derivation is common with simple equations like this, and it is one of the reasons we will encounter e so much.

Let's consider a slightly more complicated relationship between y' and y:

$$y' = ay - b.$$

For various numbers a and b. Later we’ll encounter more complicated expressions where $y' = f(t)y - g(t)$ for functions f and g. For now, this simpler equation can be solved in the same way each time, in a similar way as before.

II.1.D • 1. Result 8

Let $a \neq 0$. Let y be a function satisfying $y' = ay - b$, with $y(t_0) = w$, some specified value. Therefore for any t,

$$y(t) = \left(w - \frac{b}{a} \right) e^{a(t-t_0)} + \frac{b}{a}.$$

Proof ..:

Note that $y' = ay - b$ implies $y' = a(y - b/a)$, and hence

$$\frac{y'}{y - b/a} = a.$$

If we integrate both sides with respect to t, we get

$$\int \frac{y'(t)}{y(t) - b/a} \, dt = at + c$$

for some constant c. Through u-substitution, we can evaluate the integral on the left. So for all t,

$$\ln |y(t) - b/a| = at + c.$$

\[\text{This is a constant, since if } y > 0 \text{ somewhere, then } y > 0 \text{ everywhere, and similarly for } y < 0. \text{ To see this, since } y \text{ is continuous, otherwise } y \text{ would need to go from being positive to negative, and so be 0 somewhere. But for } y \text{ to be 0 somewhere requires } y \text{ to be 0 everywhere by some later results about the uniqueness of solutions.} \]
We can then solve for $y(t)$ to get that
\[|y(t) - b/a| = e^{e^{at}} \quad \longrightarrow \quad y(t) = Ce^{at} + b/a. \]
This C is just some constant—in particular, it’s short-hand for $e^{e^{c}} \cdot \text{sign}(w-b/a)$ given the c above. Calculating this C can be done with the initial value w:
\[w = y(t_0) = Ce^{at_0} + b/a \quad \longrightarrow \quad \frac{w - b/a}{e^{at_0}} = C. \]
Hence, we can write
\[y(t) = \left(w - \frac{b}{a} \right) e^{a(t-t_0)} + \frac{b}{a}. \]
which of course, presupposes $a \neq 0$. If $a = 0$, then the solution is trivial: $y' = b$ implies y is just a line with slope b through the point (t_0, w). \[\square \]

In special cases, this complicated expression for y can be simplified quite a bit, e.g. when t_0 or $w = 0$.

Problems involving these differential equations come in a few forms. The first is to go through the process above in a particular case. Another is to find a value of t where $y(t) = m$ for some value m. This can be done by finding the solution as above, and then solving for t in the equation $y(t) = m$.

§ II.1.E. Existence and uniqueness theorems

The existence and uniqueness theorems are important for actual mathematics, but here we’re focused on doing calculations rather than doing math. So for our purposes, these theorems merely confirm that we don’t need to do extra work in finding solutions. Once we’ve found a solution that works, that’s the only solution: there’s no need to look any further to see if maybe we’re missing something. Of course, the theorems don’t apply in all cases, so we must be careful in general.

Of the several results the book[1] gives, the existence and uniqueness of a solution to a differential equation is satisfied so long as the given functions are continuous—or in some sense smooth—in a given area, which guarantees the existence and uniqueness for at least a part of that area.

II.1.E • 1. Result 9 (The Existence and Uniqueness Theorem)

Let f and $\partial f / \partial y$ be continuous in some rectangle R. Therefore there is exactly one y such that $y(t_0) = y_0$ and $y' = f(y, t)$,
where y is defined on an interval around t_0 within the bounds of R.

This means that we have existence and uniqueness locally, although perhaps not globally. As an analogy, the equation for (the graph of) the unit circle is $x^2 + y^2 = 1$. This does not define a function y, since there will be two ys for any x. But if we restrict our view to x in the interval $[-1, 1]$ and y in the interval $[0, 1]$, it does define a function: $y = \sqrt{1 - x^2}$ over $(-1, 1)$.

Section II.2. Linear Equations

In the previous section, we worked with differential equations of the form
\[y' = ay + b, \]
for constants $a \neq 0^iv$ and b. This can be generalized slightly, where a and b are instead functions: $y' = f(t)y + g(t)$.

\[^{iv} \text{if } a = 0, \text{ the differential equation is just } y' = b, \text{ which is easily solved: } y(t) = bt + y(0). \]
In a slightly more usable form, we can write how this will usually be written:
\[y' + p(t)y = g(t) \]
for functions \(p \) and \(g \). Unlike the simpler equation, this is not separable, so our method to solve the equation cannot be so simple as just (dividing and then) integrating both sides. Instead we have two methods of finding solutions.

\section{II.2.A. Integrating factors}

The method of integrating factors is just finding a \(\mu \neq 0 \) that satisfies
\[(\mu(t)y)' = \mu(t)y' + \mu'(t)y, \]
i.e. that satisfies \(\mu'(t) = \mu(t)p(t) \).

This method allows us to conclude the following.

\section*{II.2.A·1. Result 10}

Let \(p \) and \(g \) be continuous functions, and consider the differential equation \(y' + p(t)y = g(t) \) with \(y(t_0) = y_0 \). Therefore
\[\mu(t) = e^{\int_{t_0}^{t} p(x) \, dx} \]
is an integrating factor, and
\[y(t) = \frac{y_0}{\mu(t)} + \frac{1}{\mu(t)} \int_{t_0}^{t} \mu(x)g(x) \, dx. \]

\textbf{Proof} ::.

The key observation is that \(y' + p(t)y \) looks a bit like the product rule:
\[(\mu(t)y)' = \mu(t)y' + \mu'(t)y. \]

If we can find a \(\mu \) where \(\mu' = \mu p(t) \), then the equation becomes a simple matter of integrating both sides again, and then dividing by \(\mu(t) \). To solve \(\mu' = \mu p(t) \), note that then
\[\frac{\mu'}{\mu} = p(t). \]

Hence the integrals are equal:
\[\int_{t_0}^{t} \frac{\mu'}{\mu} \, dt = \int_{t_0}^{t} p(t) \, dt. \]
As a result, a \(u \)-substitution of \(\mu(t) \) yields
\[\ln |\mu(t)| = \int_{t_0}^{t} p(t) \, dt + c \]
for some constant \(c \). Note that then
\[\mu(t) = e^{\int_{t_0}^{t} p(t) \, dt} \cdot C \]
is then the solution, for some value of \(C \). It’s important to realize now that we were just trying to find \textit{some} function \(\mu \) that would satisfy the equation. So any choice of \(C \), excluding 0, works. To make things simpler, we will choose \(C = 1 \), making \(\mu(t_0) = C = 1 \). As a result \(\mu(t) \) is always positive, and so we can divide and multiply by it:
\[g(t) = y' + p(t)y \quad \longrightarrow \quad \mu(t)g(t) = \mu(t)y' + \mu(t)p(t)y \]
\[\quad \longrightarrow \quad \mu(t)g(t) = \mu(t)y' + \mu'(t)y \]
\[\quad \longrightarrow \quad \mu(t)g(t) = (\mu(t)y)' \]
\[\quad \longrightarrow \quad \int_{t_0}^{t} \mu(t)g(t) \, dt = \mu(t)y(t) - \mu(t_0)y_0 \]
\[\quad \longrightarrow \quad \int_{t_0}^{t} \mu(t)g(t) \, dt = \mu(t)y(t) - y_0 \]
\[\quad \longrightarrow \quad y_0 + \int_{t_0}^{t} \mu(t)g(t) \, dt = \mu(t)y(t) \]
As a result, the method of integrating factors allows one to solve all first-order, linear, ordinary differential equations.

§ II.2.B. First-order undetermined coefficients

Integrating factors can be a slow process, however, requiring us to integrate potentially very complicated functions. A slightly easier idea is contained in a kind of guess and check. This method is further elaborated on in Subsection IV.2.B. For now, consider the version of the differential equation where \(g(t) = 0 \), and \(p(t) = a \) is some constant.

\[y' + ay = 0. \]

Note that any two solutions to \(y' + ay = g(t) \) will have their difference satisfy \(y' + ay = 0 \). As a result, if \(\phi(t) \) is the general solution to \(y' + ay = 0 \), and \(Y(t) \) is any solution to \(y' + ay = g(t) \), then we can say that the general solution to \(y' + ay = g(t) \) will be \(y(t) = \phi(t) + Y(t) \). Solving \(y' + ay = 0 \) is relatively easy, since it’s separable: \(y' = -ay \) and hence the general solution is \(y(t) = Ce^{-at} \).

To find a particular solution \(Y(t) \), we can do guess-and-check based on \(g(t) \). This is more restrictive than integrating factors, but can sometimes be much easier to do in practice.

II.2.B • 1. Result 11 (Undetermined Coefficients)

Consider the differential equation \(ay' + by = g(t) \).

- If \(g(t) = a_n t^n + \cdots + a_1 t + a_0 \), then guess \(Y(t) = A_n t^n + \cdots + A_1 t + A_0 \);
- If \(g(t) = \sin(at) \), or \(g(t) = \cos(at) \), then guess \(Y(t) = A \sin(at) + B \cos(at) \);
- If \(g(t) = e^{at} \), then guess \(Y(t) = Ae^{at} \);

for various constants.

If the guess ends up being a solution to \(ay' + by = 0 \), then just multiply the guess by \(t \). And if that also is a solution, keep multiplying by \(t \) until it isn’t.

If \(g \) is a product/sum of these, then our guess should be a product/sum of the corresponding guesses. For example, if \(g(t) = t \cos(2t) + 5e^t \), we should guess

\[Y(t) = (At + B)(C \cos(2t) + D \sin(2t)) + Ee^t, \]

for undetermined coefficients \(A, B, C, D, \) and \(E \). Note we need to use different constants for each guess involved.

Once we have our guess, it’s a matter of figuring out what constants work, which means plugging in \(Y(t) \) into \(ay' + by = g(t) \), and solving for the coefficients of \(Y \).

Because this is just one equation with many unknowns, it’s not obvious how we can solve for many different coefficients. To get around this, note that such an equation is supposed to hold for all \(t \), and thus we can plug in various values of \(t \) to get as many equations as we need. Alternatively—and more easily—we can equate coefficients, and get equations that way.

Section II.3. Separable and Autonomous Equations

\(^*\) so long as the functions involved are sufficiently nice, which they will be in almost all practical applications.
§II.3.A. Separable equations

There’s another way to generalize the differential equations worked with in Section II.1:

\[y' = h(y) \cdot g(t). \]

In the case of \(y' = ay + b, g(t) \) is just a constant. By dividing by \(h(y) \), when this is non-0, a more workable form for the equation is

\[f(y) \cdot y' = g(t). \]

Such equations are called separable, since we have, in some sense, separated the variables \(y \) and \(t \). Solving the differential equation is then just done by integration: using a \(u \)-substitution of \(y \):

\[\int f(y) \, dy = \int g(t) \, dt. \]

In practice, we have the following result.

II.3.A • 1. Result 12

Let \(f \) and \(g \) be continuous functions such that

1. There is a function \(y \) satisfying \(f(y) \cdot y' = g(t) \); and
2. \(y(t_0) = y_0 \).

Therefore \(F(y(t)) - F(y_0) = \int_{t_0}^{t} g(t) \, dt \).

Proof: By integrating both sides, we get through a \(u \)-substitution of \(y \),

\[
\begin{align*}
\int_{t_0}^{t} f(y) \, y' \, dt &= \int_{t_0}^{t} g(t) \, dt \\
\int_{y_0}^{y(t)} f(y) \, dy &= \int_{t_0}^{t} g(t) \, dt \\
F(y(t)) - F(y_0) &= \int_{t_0}^{t} g(t) \, dt
\end{align*}
\]

Because the method is so simple, separable equations are useful to have. Unfortunately, the integration of the functions can be difficult. Similarly, taking the inverse of \(F \) to get a unique \(y \) might also be difficult to achieve, or possibly impossible. Often it can be useful to think of \(y \) not as a function, but as another variable in relation to \(t \), in particular one of potentially many \(y \) satisfying

\[F(y) = F(y_0) + \int_{t_0}^{t} g(t) \, dt. \]

The resulting graph is then a path through the plane, but it might not be the graph of a function—i.e. it fails the vertical line test.

§II.3.B. Autonomous equations

To make things a little simpler, we can consider differential equations where there is no interaction from \(t \).

II.3.B • 1. Definition 5

A differential equation is autonomous iff it is of the form

\[y' = f(y) \]

for some function \(f \).

This means autonomous equations are separable, and so we can apply the methods there to solve the differential equations. Much of the book[1], however, is mostly focused on the stability of various constant solutions. In essence, if we find a constant \(c \) such that \(f(c) = 0 \), then the constant function \(y(t) = c \) satisfies the differential equation above.
Consider the differential equation \(y' = f(y) \) for some \(f \). The constant solution, critical point of \(f \), or equilibrium, \(y = c \) is

1. stable iff solutions with initial values “near” \(c \) approach \(c \) as \(t \to \infty \),
2. unstable iff solutions with initial values “near” \(c \) diverge from \(c \) as \(t \to \infty \),
3. semistable iff solutions near \(c \) converge on one side, and diverge on the other.

Being “near” \(c \) is a pretty ambiguous statement, but in most cases it’s clear what’s meant. For instance, if we have the equation

\[y' = (y - 1)^2(y - 2)(y - 3), \]

then we have three constant solutions: \(y(t) = 1 \), \(y(t) = 2 \), and \(y(t) = 3 \). Being “near” the solution \(y(t) = 2 \) in this case just means being somewhere between 1 and 2, or 2 and 3. But being “near” \(y(t) = 1 \) means just being anywhere from \(-\infty \) to 1, or from 1 to 2.

Finding out whether a given constant solution is stable, unstable, or semistable is often done just by looking at whether \(y' \) is positive or negative near that value. Continuing the previous example,

\[y' = (y - 1)^2(y - 2)(y - 3) \]

is positive for \(y < 1 \). Hence solutions near 1 converge to 1 when they are below it. Solutions between 1 and 2 yield \(y' \) as positive. Thus solutions near 1 converge to 1 when they are above it. Since they converge from below, and diverge when above, \(y = 1 \) is a semistable equilibrium.

\section*{Section II.4. Exact Equations}

Exact equations are a kind of generalization of separable equations, but where separable meant something of the form

\[f(y)y' + g(t) = 0, \]

exact equations allow \(f \) and \(g \) to be functions of both \(y \) and \(t \):

\[f(y, t)y' + g(y, t) = 0, \]

where \(f(y, t) \) and \(g(y, t) \) are partial derivatives of some other given function.

A differential equation is exact iff it can be put in the form

\[\frac{d}{dt}F(y, t) = \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial t} = 0, \]

for some \(F(y, t) \).

From the multi-variable chain rule, this just states that

\[\frac{d}{dt}F(y, t) = 0, \quad \text{i.e.} \quad F(y, t) = c, \]

for some constant \(c \). Solving the differential equation is then the same as solving \(F(y, t) = c \) for \(y \).

Just like with separable equations, it might not be possible to get a unique \(y \) from this. Nevertheless, such a form can allow us to describe solutions. More important for our purposes is how to find such an \(F \). Supposing that we’re given nice enough functions, we can apply the following result which tells us when an equation is exact, and how to find the function in question. Note that we’re denoting partial derivatives by subscripts here: \(f_t = \partial f / \partial t \) for example.
Let f and g be continuously differentiable functions. Therefore
\[f(y, t)y' + g(y, t) = 0 \text{ is exact } \iff f_t = g_y. \]

Figuring out whether the equation is exact can be done fairly easily thanks to this pretty simple test: the equation is exact iff $f_y = g_t$, referring to partial derivatives again. Once we know that an equation is exact, finding such an F is a problem of integration. In essence, we have
\[F = \int f(y, t) \, dt + c(y). \]
So now we regard the (no-longer) constant c from integration as a function of y. To find this $c(y)$, we integrate $g(y, t)$:
\[c(y) = \int g(y, t) \, dt - \int f(y, t) \, dt. \]
There’s nothing special about f versus g here. We could just as easily do the reverse order, but the point is the equality $F(y, t) = \int f(y, t) \, dt + c_1(y) = \int g(y, t) \, dy + c_2(t)$, for functions c_1 and c_2. This also makes intuitive sense since taking the partial derivatives makes these c_1 and c_2s disappear, leaving just $f(y, t)$ or $g(y, t)$. Note again that such an F is not unique, since $F + 2$ or $F + 15$ works just as well as a witness to the fact that $f + gg' = 0$ is an exact differential equation. But we’re not interested in finding a unique F, since just one will suffice to solve the differential equation\(^\text{vii}\).

The difficulty with exact equations is that they are really rare. But once you know that the equation is exact, then the differential equation can be dealt with fairly easily\(^\text{vii}\). Now sometimes we can turn a non-exact differential equation into an exact differential equation through the method of integrating factors: multiplying by some non-zero $\mu(t)$—solving another differential equation to find such a μ—and then solving the new exact equation. The idea is similar to the integrating factors used for linear equations, except now more general.

Consider the non-exact differential equation
\[M(t, y)y' + N(t, y) = 0. \]
An integrating factor μ that turns this into an exact differential equation is one where
\[(\mu M)y' + (\mu N) = 0, \]
and which satisfies the partial differential equation
\[\mu_t M + \mu M_t - \mu_y N - \mu N_y = 0. \]
This result allows us to conclude that if μ is a function of just t, then
\[\mu_t = \mu' = \frac{N_y - M_t}{M}, \]
allowing us to solve the differential equation to find an integrating factor μ. Similarly, if μ is a function of just y, then
\[\mu_y = \mu' = \frac{M_t - N_y}{N}. \]
Often these can be useful for confirming that we can find such a μ by instead seeing whether something like
\[\frac{M_t - N_y}{N} \]
is a function of just t or just y. But most of the time, finding such an integrating factor is not at all easy, and the above ideas won’t always work.

\(^{\text{vi}}\) and the difference of a constant won’t matter, since this constant could be subtracted from the equation $F(y, t) = c$ to yield merely a different arbitrary constant on the right hand side.

\(^{\text{vii}}\) at least conceptually
Section II.5. Examples and Exercises

II.5 • 1. Example 10
Consider the differential equation $y′ + 2y = e^{-2t}$ with initial condition $y(0) = 2$. Solve for $y(t)$ using undetermined coefficients.

II.5 • 2. Example 11
$S(0) = -8000$, and $S′ = .1S + k$ for some constant k:
8000 dollars is borrowed at an annual interest rate of 10%, compounded continuously with continuous payments at a rate of k.
1. Calculate k if $S(3) = 0$.
2. Calculate the amount paid during the 3 year period.

II.5 • 3. Example 12
$S(0) = -150,000$, and $S′ = \frac{0.06}{12}S + (800 + 10t)$:
150,000 dollars is borrowed at an annual interest rate of 6%, compounded continuously with continuous payments at a rate of $800 + 10t$ per month.
- a. When is $S(t) = 0$?
- b. How large of a loan could be paid off in exactly 20 years given the payment of $800 + 10t$ per month?

II.5 • 4. Example 13
Suppose that $u′ = -\alpha u^4$ with $u(0) = 2000$, and $\alpha = 2 \cdot 10^{-12}$.
1. Solve the differential equation.
2. Find the time τ where $u(\tau) = 600$.

II.5 • 5. Example 14
A more realistic model of a baseball in flight includes the effect of air resistance. In this case the equations of motion are
\[
\frac{dv}{dt} = -rv, \quad \frac{dw}{dt} = -g - rw,
\]
where r is the coefficient of resistance.
- a. Determine $v(t)$ and $w(t)$ in terms of initial speed u and initial angle of elevation A.
- b. Find $x(t)$ and $y(t)$ if $x(0) = 0$ and $y(0) = h$.
- c. Plot the trajectory of the ball for $r = 1/5$, $u = 125$, $h = 3$, and for several values of A. How do the trajectories differ from those in problem 22 with $r = 0$?

II.5 • 6. Example 15
Consider the differential equation $(t - 3)y′ + y \ln t = 2t$ where $y(1) = 2$. Determine an interval where the solution this initial value problem is certain to exist.

II.5 • 7. Example 16
Consider the differential equation $y′ = (t^2 + y^2)^{3/2}$.
State where in the ty-plane the hypotheses of The Existence and Uniqueness Theorem (II.1.E • 1) are satisfied.
II.5.8. Example 17

a. Verify that both \(y_1(t) = 1 - t \) and \(y_2(t) = -t^2/4 \) are solutions of the initial value problem
\[
y' = -\frac{t + \sqrt{t^2 + 4y}}{2}, \quad y(2) = -1.
\]
Where are these solutions valid?

b. Explain why the existence of two solutions of the given problem does not contradict the uniqueness part of The Existence and Uniqueness Theorem (II.1.E • 1).

c. Show that \(y(t) = ct^2 + c^2 \), where \(c \) is an arbitrary constant, satisfies the differential equation in part a for \(t \geq -2c \). If \(c = -1 \), the initial condition is also satisfied, and the solution \(y = y_1(t) \) is obtained. Show that there is no choice of \(c \) that gives the second solution \(y_2(t) \).

II.5.9. Example 18

Suppose \(y' = -\beta y \), and \(x' = -\alpha xy \). \(x \) is the proportion of susceptibles, \(y \) is the proportion of carriers.

a. Solve for \(y(t) \) given that \(y(0) = y_0 \).

b. Solve for \(x(t) \) given that \(x(0) = x_0 \) using \(y(t) \) from part a.

c. Find the proportion of the population that escapes the epidemic by finding the limiting value of \(x \) as \(t \to \infty \).

II.5.10. Example 19

Consider \(y' = e^{2x} + y - 1 \). Find an integrating factor and solve the given equation.

II.5.11. Example 20

Solve the equation
\[
\frac{dy}{dt} + (1 + 2t)y = 3t, \quad y(0) = 1.
\]

II.5.12. Example 21

(a) Find the critical points of the equation
\[
\frac{dy}{dt} = y \cdot (2y - 1) \cdot (y - 2).
\]

(b) Find the type of each critical point (stable, unstable, semi-stable).

(c) If \(y(0) = 1 \) what is \(\lim_{t \to \infty} y(t) \)?
 If \(y(0) = 1/4 \) what is \(\lim_{t \to \infty} y(t) \)?
 If \(y(0) = 3/2 \) what is \(\lim_{t \to \infty} y(t) \)?

II.5.13. Example 22

1. Find the critical points of the equation \(y' = y(1 + y^2 - 5y) \).
2. Find the type of each critical point.
3. If \(y(0) = 1 \), what is \(\lim_{t \to \infty} y(t) \)?

II.5.14. Example 23

Solve the equation
\[
y' = \left(1 + \frac{1}{t^2}\right)y + \begin{cases} 1 & \text{if } 1 \leq t \leq 2 \\ 2 & \text{if } 2 < t, \end{cases}
\]
with initial condition \(y(1) = 1 \).
Chapter III. Discrete Problems

Section III.1. First-order difference equations

Let's take a break from looking at continuous functions to looking at discrete problems. In particular, sequences \(<y_0, y_1, y_2, \ldots> \) defined by recursion, meaning that we get the next value from the previous ones:

\[y_{n+1} = f(n, y_n), \]

for some function \(f \). This is supposed to be analogous to the differential equation \(y' = f(t, y) \). Now clearly given an initial value \(y_0 \), the above equation uniquely defines a function: we just compute \(f(0, y_0) \) to get \(y_1 \), and then we compute \(f(1, y_1) \) to get \(y_2 \), \(f(2, y_2) \) for \(y_3 \), and so on. But this process is both lengthy, and uninformative about the general trends of solutions.

The interest with these equations \(y_{n+1} = f(n, y_n) \) is giving a closed form solution, meaning an expression that calculates \(y_n \) at any \(n \) (given the initial value \(y_0 \)). This would allow us to see what happens to \(y_n \) as \(n \to \infty \), for instance. If we can still find a closed form solution for arbitrary \(y_0 \), we can also see what happens if we vary the initial value \(y_0 \).

In general, however, finding such closed form solutions is either impossible, or difficult at the very least. Although we can calculate any given value just by calculating \(f \) a bunch of times, it’s hard to figure out how to calculate just based on \(n \) without knowing previous values.

There is no sure-fire way to find a closed form solution. Generally, the best method is to calculate the first several values in terms of \(y_0 \), and then try to generalize. Of course, you then want to confirm that your solution \(g(n) \) is actually correct by plugging it into \(f \), and making sure \(f(n, g(n)) \) is just \(g(n+1) \) for all \(n \).

Now there are more analogous properties of difference equations and differential equations\(^1\). For example, like with autonomous differential equations, we have a notion of stability of constant solutions (solutions where \(y_n = c \) for all \(n \), i.e. the sequence \(<y_0, y_1, y_2, \ldots> = <c, c, c, \ldots> \)).

III.1.1. Definition 8

Consider the first-order difference equation \(y_{n+1} = f(y_n) \) for some \(f \). The constant solution or equilibrium \(c \) is

1. **stable** iff solutions with \(y_0 \) “near” \(c \) approach \(c \) as \(t \to \infty \).
2. **unstable** iff solutions with \(y_0 \) “near” \(c \) diverge from \(c \) as \(t \to \infty \).

However, being “near” \(c \) is vague, even more-so than in autonomous differential equations (equations of the form \(y' = f(y) \) for some \(f \)). In many cases it may be unclear where a solution is stable.

Section III.2. Euler’s Method

§ III.2.A. The method

\(^1\)Well, really it’s the definitions that are analogous.
Euler’s method is a pretty intuitive way of approximating solutions. The idea is a step-by-step process where you look at what direction you’re supposed to go, and then go a few steps in that direction, and then re-evaluate what direction you’re supposed to go, and so on. The direction is determined by \(y' \), and the steps you take are arbitrary. But intuitively, if you keep correcting your direction really frequently—taking only small steps—you’ll be more accurate in the end. This unfortunately means that if you want an accurate approximation, you’ll need to take a lot of time to do the process over and over many times.

It’s usually the case that the step size is the same every time: some value \(h \). If you step by \(h \) every time, then you’re approximating the value of the function at \(y_0 = y(t_0), y_1 = y(t_0 + h), y_2 = y(t_0 + 2h) \), and so on: \(y_n = y(t_0 + nh) \). This creates a first-order difference equation.

III.2.A • 1. Result 15

Suppose \(y' = f(t, y) \) and \(y(t_0) = y_0 \). Thus Euler’s method gives the first-order difference equation

\[
y_{n+1} = y_0 + h \cdot f(t_0 + nh, y_n),
\]

which is supposed to approximate the solution to the differential equation at \(t_0 + nh \):

\[
y(t_0 + nh) \approx y_n.
\]

The resulting table of values of \((t_1, y_1), (t_2, y_2), \text{ etc.} \) yields an approximation of the solution to \(y' = f(y, t) \) with initial value \(y(t_0) = y_0 \). Again, this process is long if done by hand, so such problems almost need a calculator if you don’t want to waste your time.

§ III.2.B. Errors in Euler’s method

Recall that Euler’s method is a step-by-step process where you look at where you’re supposed to go, then go a few steps in that direction, and then re-evaluate what direction you’re supposed to go, over and over. Now if we can actually solve the initial value problem \(y' = f(t, y) \) with \(y(t_0) = y_0 \) for \(y \), then we can look at the difference between the approximated values, and the actual values: the error in our approximations. Even better, if we can get a closed form solution to the differential equation in Result 15 (III.2.A • 1), then we can look at how our error develops over time, and how good our approximated solution becomes.

III.2.B • 1. Definition 9

Consider the differential equation \(y' = f(t, y) \) with \(y(t_0) = y_0 \).

Let \(\phi(t) \) be a solution this.

Let \(\langle y_0, y_1, y_2, \ldots \rangle \) be a sequence approximating \(\phi \) by Euler’s method with step size \(h \).

The error or global truncation error of this approximation is the sequence \(\langle E_0, E_1, E_2, \ldots \rangle \) where

\[
E_n := \phi(t_n) - y_n.
\]

The local truncation error of the method is the sequence \(\langle e_0, e_1, e_2, \ldots \rangle \) would be the errors of the next step in Euler’s method if we correctly started with \(\phi(t_{n-1}) \):

\[
e_n := \phi(t_n) - \left[\phi(t_{n-1}) + h \cdot f(t_n, \phi(t_{n-1})) \right], \text{ while}
\]

\[
E_n := \phi(t_n) - \left[y_{n-1} + h \cdot f(t_n, y_{n-1}) \right].
\]

Errors in \(E_n \) have accumulated, but the errors on \(e_n \) have not. Given that \(y_n \approx \phi(t_n) \) for all \(n \), we should have that \(e_n \approx E_n \) (as the above would suggest), but this is often not the case, especially for large \(n \). The book[1] has its own favorite way of calculating the local truncation error with the following.
Consider the differential equation \(y' = f(t, y) \) with \(y(t_0) = y_0 \).
Let \(\phi(t) \) be a solution to this with continuous second derivative \(\phi'' \).
Consider Euler’s method with step size \(h: t_n = t + nh \). The local truncation error of this method is the sequence \(\langle e_0, e_1, e_2, \cdots \rangle \) where
\[
e_n := \frac{1}{2} \phi''(\bar{t}) h^2,
\]
where \(\bar{t} \) is a fixed, unknown (to us) value between \(t_n \) and \(t_{n+1} \).

The value of \(\bar{t} \) is one is given by a cut-off taylor polynomial. In particular, we approximate \(\phi \) with its taylor series, stopping at \(\phi'' \). This isn’t exactly \(\phi \), however, so we allow the \(\phi'' \) term to be evaluated somewhere between \(t_n \) and \(t_{n+1} \) to ensure the equality actually holds:
\[
\phi(t_{n+1}) = \phi(t_n) + \phi'(t_n) h + \frac{1}{2} \phi''(\bar{t}) h^2.
\]
This can be done so long as \(\phi'' \) is continuous between \(t_n \) and \(t_{n+1} \).

§ III.2.C. Improvements in Euler’s method

The improved Euler method is to approximate based on two things: where you are, and where you would end up. This requires solving an equation to get your result, but the approximation will be better. In particular,

Consider the differential equation \(y' = f(t, y) \) for some function \(f \) and initial value \(y(t_0) = y_0 \).
Let \(t_n = t_0 + nh \) for some fixed \(h \).
The improved Euler method with step-size \(h \) is a sequence \(\langle y_0, y_1, \cdots \rangle \) satisfying
\[
y_{n+1} = y_n + h f_n + f(t_{n+1}, y_n + h f_n). \\
\quad \text{where } f_n := f(t_n, y_n).
\]
The sequence is supposed to approximate the actual solution \(\phi \) at the points \(t_0, t_1, \) and so on:
\[
y_0 = \phi(t_0) \\
y_1 = \phi(t_1) \\
y_2 = \phi(t_2) \\
y_3 = \phi(t_3) \\
\vdots
\]
Note that \(h \) and \(t_0 \) determine \(t_n \) for every \(n \), so we can’t skip values in our calculations. If \(t_0 = 0 \) and \(h = .025 \), to approximate \(\phi(25) \), we would have to calculate \(t_1, t_2, \cdots, \) up to \(t_{1000} \).

In essence, the improved Euler method is similar to using trapezoids in Riemann integration as opposed to rectangles.
Section III.3. Examples and Exercises

III.3.1. Example 24

Consider the differential equation with initial condition $y(0) = 1$
\[y' = 2y - 1. \]

a. Approximate y at $t = .1, .2, .3,$ and .4 using Euler’s method with $h = .1$.
b. Approximate y at those same values with with $h = .05$.
c. Approximate y at those same values with $h = .025$.
d. Find the solution to the differential equation, and compute its values at .1, .2, .3, and .4, comparing with the approximations.

III.3.2. Example 25

Solve the difference equation
\[y_{n+1} = -\frac{9}{10}y_n \]
in terms of y_0, and describe the behavior of the solution as $n \to \infty$.

III.3.3. Example 26

Solve the difference equation
\[y_{n+1} = (-1)^{n+1}y_n \]
in terms of y_0, and describe the behavior of the solution as $n \to \infty$.

III.3.4. Example 27

Solve the difference equation
\[y_{n+1} = \frac{1}{2}y_n + 6 \]
in terms of y_0, and describe the behavior of the solution as $n \to \infty$.

III.3.5. Example 28

Suppose $y_0 = -100,000$ with y_{n+1} for $n \geq 0$ calculated by
\[y_{n+1} = \left(1 + \frac{9}{100} - \frac{1}{12}\right)y_n + p \]
for some constant p (here n is in months).
1. What p (monthly payment) has $y_{30-12} = 0$?
2. What p has $y_{20-12} = 0$?
3. What is the total amount paid in each case?

III.3.6. Example 29

Consider the differential equation
\[y' = \frac{1}{2}t - 2y \]
with $y(0) = 1$.

Find approximate values of the solution at $t = .5, 1, 1.5,$ and 2 using Euler’s method with $h = .025$.

26
Obtain a formula for the local truncation error for Euler’s method in terms of t and the exact solution $y = \phi(t)$ for the differential equation

$$y' = 5t - 3\sqrt{y}, \quad y(0) = 2.$$
Chapter IV. Second-Order, Linear, Differential Equations

First order equations had many different types that we studied, but here we will be focused on two types: homogeneous, and non-homogeneous equations, both of which are kinds of linear equations. The primary kinds of equations we will be working with will be of the form
\[y'' + p(t)y' + q(t)y = g(t) \]
for functions \(p, q, \) and \(g. \) First, we need to consider what happens when \(g = 0. \)

Section IV.1. Homogeneous Equations

There is little connection with “homogenous” used in differential equations, and the term used in the rest of mathematics. For our purposes, we have the following definition.

IV.1 • 1. Definition 12

A second-order differential equation is **homogeneous** iff it is of the form
\[P(t)y'' + Q(t)y' + R(t)y = 0, \]
for some functions \(P, Q, \) and \(R. \)

In other words, it is homogeneous iff it is linear with no constant (with respect to \(y \)) term. The solutions of these equations will be of the form \(C\phi_1 + D\phi_2 \) for solutions \(\phi_1 \) and \(\phi_2 \) where \(C \) and \(D \) are determined using the initial values of any given initial value problem: \(y_0 \) and \(y'_0. \) The expression \(C\phi_1 + D\phi_2 \) is a **linear combination**, a phrase that may be thrown around a lot at this point. We have the following definition.

IV.1 • 2. Definition 13

Let \(\phi_1, \phi_2, \cdots, \phi_n \) be some things (functions, vectors, etc.). A linear combination of these is anything of the form
\[c_1\phi_2 + c_2\phi_2 + \cdots + c_n\phi_n \]
for constants \(c_1, c_2, \cdots, \) and \(c_n, \) the **coefficients**.

Finding solutions can be more difficult, but the idea is that we only need to find two solutions to get the general solution. The key thing, however, is that these solutions must be different enough. What characterizes this is having a non-zero **Wronskian**.

IV.1 • 3. Definition 14

Let \(f \) and \(g \) be two differentiable functions. The **Wronskian** is the function given by
\[W[f, g] = \det \begin{bmatrix} f & g \\ f' & g' \end{bmatrix} = fg' - f'g. \]
Consider the differential equation
\[y'' + p(t)y' + q(t)y = 0, \quad y(t_0) = y_0, \quad y'(t_0) = y'_0, \]
for some \(p \) and \(q \). Suppose \(\phi_1 \) and \(\phi_2 \) are distinct solutions to this.

So long as \(W[\phi_1, \phi_2](t_0) \neq 0 \), any solution \(y \) around \(t_0 \) can be written as a linear combination of \(\phi_1 \) and \(\phi_2 \):
\[y(t) = C \phi_1(t) + D \phi_2(t), \]
for constants \(C \) and \(D \). \(\phi_1 \) together with \(\phi_2 \) make up a fundamental set of solutions

In some sense, we’re making sure that \(f \) and \(g \) are different enough: that the vector \(\langle f, f' \rangle \) isn’t just a scaled version of \(\langle g, g' \rangle \), and similarly that \(\langle f, g \rangle \) isn’t just a scaled version of \(\langle f', g' \rangle \). In another sense, we’re making sure that 0 isn’t a linear combination of these (when the coefficients are non-zero). Note the following theorem that tells us what \(W[\phi_1, \phi_2] \) is without having to find \(\phi_1 \) and \(\phi_2 \):

Consider the differential equation
\[y'' + p(t)y' + q(t)y = 0, \]
and suppose \(\phi_1 \) and \(\phi_2 \) are solutions to this. Therefore
\[W[\phi_1, \phi_2](t) = C e^{-\int p(t) \, dt} \]
for some constant \(C \) (depending on \(\phi_1 \) and \(\phi_2 \)).

In particular, this means that if the Wronskian of two solutions is 0 somewhere on an interval, since \(e^{\text{(whatever)}} \) is never 0, \(C \) must be 0. This would imply that it is always 0 on that interval, so that the inverse holds too: if the Wronskian is not 0 somewhere on an interval, then it is never 0 on that interval.

In the case that \(p \) and \(q \) are continuous everywhere, this means the Wronskian of two solutions is either always 0 or never 0. However, if \(p \) and \(q \) have discontinuities, the Wronskian may be non-0 just on a small interval, and 0 everywhere else. Regardless, we still get our desired equalities from previous theorems: on such an interval, any solution can be written as a linear combination of those two solutions.

Note also that Abel’s Theorem (IV.1 • 5) references the Wronskian of solutions to second-order, homogeneous, differential equations, not functions in general. For example, the Wronskian of \(e^t \) and \(\cos t \) is
\[W[e^t, \sin t] = \det \begin{bmatrix} e^t & \sin t \\ e^t & \cos t \end{bmatrix} = e^t \cos t - e^t \sin t, \]
which is never constantly 0 on an interval\(^1\), but it is occasionally 0, e.g. at \(t = \pi/4 \).

Now returning back to equations, in the case that \(P, Q, \) and \(R \) are constants in the equation \(P(t)y'' + Q(t)y' + R(t)y = 0 \), we have the following result that allows us to characterize the solutions.

Consider the differential equation \(a y'' + b y' + c y = 0 \). If there are two solutions \(r_1 \neq r_2 \) (real or complex) to
\[ar^2 + br + c = 0, \]
then all solutions of the differential equation are of the form
\[Ce^{r_1 t} + De^{r_2 t} \]
for some constants \(C \) and \(D \).

\(^1\)at least on an interval that isn’t a single point
A hiccup, however, is when there is only one solution to \(ar^2 + br + c = 0\), i.e. when using the quadratic formula, the discriminant is 0.

Consider the differential equation \(ay'' + by' + cy = 0\). If \(r = r_1 = r_2\) is the only solution to \(ar^2 + br + c = 0\), then all solutions of the differential equation are of the form \(Ce^{rt} + Dte^{rt}\), for some constants \(C\) and \(D\).

Proof:

Claim 1

\(\phi_1(t) = te^{rt}\) is a solution to \(ay'' + by' + cy = 0\).

Proof:

We can calculate that \(\phi_1'(t) = rte^{rt} + e^{rt}\), \(\phi_1''(t) = r^2te^{rt} + 2re^{rt}\). Hence

\[
\begin{align*}
 a\phi_1'' + b\phi_1' + c\phi_1 &= ar^2te^{rt} + 2are^{rt} + brte^{rt} + be^{rt} + cte^{rt} \\
 &= rte^{rt}(ar^2 + br + c) + e^{rt}(2ar + b) \\
 &= c + e^{rt}(2ar + b).
\end{align*}
\]

Since \(r\) is the only solution to \(ax^2 + bx + c = 0\), we can write

\[
ax^2 + bx + c = a(x - r)^2 = ax^2 - 2arx + ar^2,
\]

which then requires \(b\) to be \(-2ar\). Hence \(2ar + b = 0\) so that above,

\[
a\phi_1'' + b\phi_1' + c\phi_1 = 0
\]

It’s clear that \(\phi_2(t) = e^{rt}\) is a solution to \(ay'' + by' + cy = 0\) just by computation. So these two form two solutions. Now we want to use Theorem 1 (IV.1 • 4), so we must find when the Wronskian is non-zero.

\[
W[\phi_1, \phi_2](t) = \det \begin{bmatrix} \phi_1 & \phi_2 \\ \phi_1' & \phi_2' \end{bmatrix} = \det \begin{bmatrix} te^{rt} & e^{rt} \\ e^{rt} + rte^{rt} & e^{rt} \end{bmatrix} = tre^{2rt} - e^{2rt} - rte^{rt} = -e^{2rt},
\]

which is never 0. So by Theorem 1 (IV.1 • 4), all solutions are of the form \(y(t) = C\phi_1(t) + D\phi_2(t)\), for constants \(C\) and \(D\).

To introduce more notation, when working with a homogeneous differential equation \(y'' + p(t)y' + q(t)y = 0\), some people like to write \(L[\phi]\) as the function on the left hand side of that equality:

\[
L[\phi] = \phi'' + p\phi' + q\phi.
\]

Note that the differential equation is then stating \(L[y] = 0\). Obviously not all functions \(\phi\) have \(L[\phi] = 0\), so it is up to the above methods to try and figure out which \(\phi\) satisfy this. Right now, we only know how to do this when the differential equations involves constant coefficients. But supposing that we’re giving one \(\phi_1\), how do we find a second solution \(\phi_2\)? Below is a method to help with this.

§ IV.1.A. Reduction of order

Returning to differential equations, recall that if we can find two “different enough” solutions to a second-order, ho-
mogeneous, differential equation
\[P(t)y'' + Q(t)y' + R(t)y = 0, \]
then any solution will be a linear combination of those two solutions: \(Cy_1 + Dy_2 \) for constants \(C \) and \(D \). But often it can be hard to find two solutions, let alone one. The method of reduction of order can sometimes be used to help with this. In general, reduction of order is just a means of reducing the order of a differential equation by considering a different differential equation with a smaller order.

IV.1.A • 1. Result 18

Consider the differential equation \(y'' + p(t)y' + q(t)y = 0 \). Suppose \(y_1 \) is a solution to this (that isn’t just the constant 0). Thus
\[y_2(t) = v(t) \cdot y_1(t) \]
is also a solution, given that we can find a \(v \) where
\[y_1(t)v'' + (2y_1(t) + p(t)y_1(t))v' = 0. \]

Proof: If we can find such a \(v \), then by the product rule,
\[
\begin{align*}
y_1' &= v'y_1 + vy_1' \\
y_1'' &= v'y_1' + 2v'y_1 + vy_1'' \\
&= v''y_1 + 2v'y_1' - vpy_1' - vqy_1.
\end{align*}
\]
\[y_2'' + py_2' + qy_2 = (v''y_1 + 2v'y_1' - vpy_1' - vqy_1) + pv_1'y_1 + pvy_1' + qvy_1 \\
&= v''y_1 + (2y_1' - v + py_1)v' \\
&= 0 \quad \blacksquare
\]
The equation above used to find \(v \) is really just a result of plugging in \(y_2 = vy_1 \) to the differential equation, and finding out what \(v \) must satisfy. Actually finding a \(v \) where that happens can be done by instead solving for \(w = v' \) in the first-order, linear differential equation
\[y_1w' + (2y_1 + py_1)w = 0, \]
and then integrating \(w \) to get \(v \).

Section IV.2. Non-Homogeneous Equations

§ IV.2.A. Theory behind non-homogeneous equations

A homogeneous, second-order, differential equation is any equation of the form
\[P(t)y'' + Q(t)y' + R(t)y = 0. \]
We “know” how to solve a second-order, homogeneous differential equation in general—at least in principle. Doing this requires finding two particular solutions that are “different enough”—in that they have a non-zero Wronskian. Finding two solutions can be incredibly difficult, but once we have them, \(\phi_1 \) and \(\phi_2 \) to
\[P(t)y'' + Q(t)y' + R(t)y = 0, \]
then all solutions to this will be of the form
\[y(t) = C\phi_1(t) + D\phi_2(t) \]
for various constants \(C \) and \(D \).

Now we will turn to non-homogeneous, linear, second-order, differential equations.
A non-homogeneous, linear, second-order, differential equation is an equation of the form
\[P(t)y'' + Q(t)y' + R(t)y = S(t) \]
for functions \(P, Q, R, \) and \(S \).

Solving these is even harder in general, so we will look at a couple of methods to help. The guiding idea is the following result.

Consider the homogeneous differential equation
\[P(t)y'' + Q(t)y' + R(t)y = 0. \]
Let \(\phi_1 \) and \(\phi_2 \) be solutions of this with non-zero Wronskian. Thus all solutions to the non-homogeneous differential equation
\[P(t)y'' + Q(t)y' + R(t)y = S(t) \]
will be of the form
\[y(t) = C\phi_1(t) + D\phi_2(t) + Y(t), \]
where \(Y(t) \) solves the non-homogeneous equation.

Proof:

Firstly, let \(y(t) \) be an arbitrary solution to the non-homogeneous, differential equation. Consider the function \(\phi = y - Y \). We have derivatives \(\phi' = y' - Y' \), and \(\phi'' = y'' - Y'' \). Hence
\[
P\phi'' + Q\phi' + R\phi = P \cdot (y'' - Y'') + Q \cdot (y' - Y') + R \cdot (y - Y) \\
= (Py'' + Qy' + Ry) - (Py'' + QY' + RY) \\
= S - S = 0.
\]

In other words, \(\phi \) is a solution to the homogeneous differential equation
\[P(t)y'' + Q(t)y' + R(t)y = 0. \]
But those solutions are of the form \(C\phi_1 + D\phi_2 \) for some constants \(C \) and \(D \). Thus for some constants \(C, D, \)
\[y - Y = C\phi_1 + D\phi_2 \]
\[\therefore y = C\phi_1 + D\phi_2 + Y \]

So if solving a second-order, homogeneous, differential equation requires finding two solutions—\(\phi_1 \) and \(\phi_2 \)—solving a non-homogeneous, linear, differential equation requires finding three—\(\phi_1 \) and \(\phi_2 \) to the homogeneous version, and \(Y \) to the non-homogeneous version. The next two ideas are trying to find such a \(Y \).

§ IV.2.B. Undetermined coefficients

The method of undetermined coefficients is in essence making an educated guess at a particular solution \(Y \) to an equation of the form
\[ay'' + by' + cy = g(t) \]
for various \(g(t) \). Note that this is somewhat restricted for two reasons. Firstly, rather than second-order, linear, differential equations in general,
\[P(t)y'' + Q(t)y' + R(t)y = g(t), \]
we require that the coefficients \(P, Q, \) and \(R \) be constants. Secondly, \(g \) must be simple or nice enough to be able to guess the solution. This means products and sums of polynomials, sines, cosines, and exponentials. If \(g \) involves a quotient, or some other function, we can’t use the method of undetermined coefficients.
Consider the differential equation \(ay'' + by' + cy = g(t) \).

If \(g(t) = a_n t^n + \cdots + a_1 t^1 + a_0 \), then guess \(Y(t) = A_n t^n + \cdots + A_1 t^1 + A_0 \);

if \(g(t) = \sin(at) \), or \(g(t) = \cos(at) \), then guess \(Y(t) = A \sin(at) + B \cos(at) \);

if \(g(t) = e^{at} \), then guess \(Y(t) = Ae^{at} \);

for various constants.

If the guess ends up being a solution to the homogeneous equation \(ay'' + by' + cy = 0 \), then just multiply the guess by \(t \). And if that also is a solution, keep multiplying by \(t \) until it isn’t.

If \(g \) is a product/sum of these, then our guess should be a product/sum of the corresponding guesses. For example, if \(g(t) = t^3 \sin(at)e^{bt} \), we should guess

\[
Y(t) = (C_3 t^3 + C_2 t^2 + C_1 t + C_0) \cdot (A \sin(at) + B \cos(at)) \cdot Ge^{bt},
\]

for undetermined coefficients \(C_0, C_1, C_2, C_3, A, B, \) and \(G \). Note we need different constants for each guess involved.

Noting the restrictions on the method of undetermined coefficients is where variation of parameters comes in.

§IV.2.C. Variation of parameters

A better method, but harder to actually do, is variation of parameters. Although significantly more general, applying to differential equations of the form

\[
y'' + p(t)y' + q(t)y = g(t).
\]

the method is harder to work with, and harder to remember. The basic thing to remember is the setup \(Y(t) = u_1 \phi_1 + u_2 \phi_2 \) for solutions \(\phi_1, \) and \(\phi_2 \) to the homogeneous version, and

\[
\begin{bmatrix}
\phi_1 & \phi_2 \\
\phi'_1 & \phi'_2
\end{bmatrix}
\begin{bmatrix}
u'_1 \\
u'_2
\end{bmatrix}
= \begin{bmatrix}0 \\
g
\end{bmatrix}.
\]

You can then solve for \(u_1 \) and \(u_2 \) to find \(Y \). This will generalize for higher-order differential equations, when we have the setup that \(Y = u_1 \phi_1 + \cdots + u_n \phi_n \), and then assume

\[
W \begin{bmatrix}
u'_1 \\
\vdots \\
u'_{n-1} \\
u'_n
\end{bmatrix} = \begin{bmatrix}0 \\
\vdots \\
0 \\
g
\end{bmatrix},
\]

where \(W \) is the Wronskian matrix of \(\phi_1, \cdots, \phi_n \). So it’s good to memorize the first matrix equation.

Using either method, once we have \(\phi_1, \phi_2 \)—fundamental solutions to the homogeneous version of the differential equation—and a \(Y \), the general solution to the non-homogeneous equation will be

\[
C \phi_1 + D \phi_2 + Y
\]

for constants \(C \) and \(D \).

Consider the differential equation

\[
y'' + p(t)y' + q(t)y = g(t).
\]

Let \(\phi_1 \) and \(\phi_2 \) be two solutions to the homogeneous version \(y'' + p(t)y' + q(t)y = 0 \) with \(W[\phi_1, \phi_2] \neq 0 \).

Thus the following \(Y \) is a solution to the non-homogeneous equation.

\[
Y = -\phi_1 \int \frac{\phi_2 g}{W[\phi_1, \phi_2]} \, dt + \phi_2 \int \frac{\phi_1 g}{W[\phi_1, \phi_2]} \, dt.
\]

So all solutions are of the form \(y = C \phi_1 + D \phi_2 + Y \) for constants \(C \) and \(D \).
Proof ..

We begin by assuming two things:
\[Y(t) = u_1(t)\phi_1(t) + u_2(t)\phi_2(t) \]
\[Y'(t) = u_1(t)\phi_1'(t) + u_2(t)\phi_2'(t), \]
for some functions \(u_1 \) and \(u_2 \). This ensures that \(u_1 \) and \(u_2 \) act similar to constants when we take the first derivative. The second derivative, however, allows for that to change:

\[
Y'' = \frac{d}{dt}(u_1\phi_1') + \frac{d}{dt}(u_2\phi_2')
= u_1\phi_1'' + u_1\phi_1' + u_2\phi_2'' + u_2\phi_2'.
\]

Note that then \(Y \) is a solution to the given differential equation iff
\[
Y'' + pY' + qY = g(t) \iff (u_1\phi_1'' + u_1\phi_1' + u_2\phi_2' + u_2\phi_2') + p(u_1\phi_1' + u_2\phi_2') + q(u_1\phi_1 + u_2\phi_2) = g(t)
\iff u_1\phi_1'' + u_1\phi_1' + u_2\phi_2' + u_2\phi_2 + q\phi_1 = g(t)
\iff u_1\phi_1' + u_2\phi_2 = g(t).
\]

Now because \(Y'(t) = u_1\phi_1' + u_2\phi_2' \), the rest of the terms we would get from the product rule must be 0:
\[
u_1\phi_1' + u_2\phi_2 = 0.
\]

Hence we have two equations, and two unknowns—\(u_1' \) and \(u_2' \)—which is equivalent to the matrix equation
\[
\begin{bmatrix}
\phi_1' \\
\phi_2'
\end{bmatrix}
= \begin{bmatrix}
u_1' \\
u_2'
\end{bmatrix} = \begin{bmatrix} 0 \\ g \end{bmatrix}.
\]

Since the Wronskian—the determinant of the matrix on the left—is non-zero, we can invert the matrix to get

\[
\begin{bmatrix}
u_1' \\
u_2'
\end{bmatrix} = \frac{1}{W[\phi_1', \phi_2']}
\begin{bmatrix}
\phi_2' & -\phi_2 \\
-\phi_1' & \phi_1
\end{bmatrix}
\begin{bmatrix} 0 \\ g \end{bmatrix}.
\]

So any functions \(u_1 \) and \(u_2 \) satisfying this will have \(Y = u_1\phi_1 + u_2\phi_2 \) satisfy the differential equation. In particular, integrating tells us that
\[
u_1 = \int -\frac{\phi_2 g}{W[\phi_1', \phi_2']} \, dt, \quad \text{and} \quad u_2 = \int \frac{\phi_1 g}{W[\phi_1', \phi_2']} \, dt.
\]

work. Thus we have found a particular solution \(Y \), and so by Result 19 (IV.2.A • 2), any solution will be of the form \(C\phi_1 + D\phi_2 + Y \) for constants \(C \) and \(D \).

So in general, the process is to assume
\[
Y = u_1\phi_1 + u_2\phi_2
\]
where
\[
u_1'\phi_1 + u_2'\phi_2 = 0
\]
\[
u_1'\phi_1' + u_2'\phi_2' = g,
\]
and then to solve for \(u_1' \) and \(u_2' \) to get some \(u_1 \) and \(u_2 \) that work.
Section IV.3. Examples and Exercises

IV.3 • 1. Example 31
Find the general solution to \(y'' + 2y' + 2y = 0 \).

IV.3 • 2. Example 32
Consider the initial value problem
\[
3u'' - u' + 2u = 0, \quad u(0) = 2, \quad u'(0) = 0.
\]
1. Find the solution \(u(t) \) of this problem.
2. For \(t > 0 \), find the first time at which \(|u(t)| = 10 \).

IV.3 • 3. Example 33
Consider the initial value problem
\[
5u'' + 2u' + 7u = 0, \quad u(0) = 2, \quad u'(0) = 1.
\]
1. Find the solution \(u(t) \) of this problem.
2. Find the smallest \(T \) such that \(|u(t)| \leq 0.1 \) for all \(t > T \).

IV.3 • 4. Example 34
Show that \(W[e^t \cos(\mu t), e^t \sin(\mu t)] = \mu e^{2t} \).

IV.3 • 5. Example 35
An equation of the form
\[
t^2 \frac{d^2 y}{dt^2} + \alpha \frac{dy}{dt} + \beta y = 0, \quad t > 0,
\]
where \(\alpha \) and \(\beta \) are real constants, is called an Euler equation.
\begin{itemize}
 \item[a.] Let \(x = \ln t \) and calculate \(\frac{dy}{dx} \) and \(\frac{d^2 y}{dx^2} \) in terms of \(\frac{dy}{dt} \) and \(\frac{d^2 y}{dt^2} \).
 \item[b.] Use the results of part (a) to transform equation (33) into
\end{itemize}
\[
\frac{d^2 y}{dx^2} + (\alpha - 1) \frac{dy}{dx} + \beta y = 0 \quad (34)
\]
Observe that differential equation (34) has constant coefficients. If \(y_1(x) \) and \(y_2(x) \) form a fundamental set of solutions of equation (34), then \(y_1(\ln t) \) and \(y_2(\ln t) \) form a fundamental set of solutions of equation (33).

IV.3 • 6. Example 36
Find the general solution of \(y'' - 2y' + y = 0 \).

IV.3 • 7. Example 37
Find the general solution of \(16y'' + 24y' + 9y = 0 \).

IV.3 • 8. Example 38
Solve the initial value problem
\[
y'' + 4y' + 4y = 0, \quad y(-1) = 2, \quad y'(-1) = 1.
\]
Sketch the graph of the solution and describe its behavior for increasing \(t \).
IV.3 • 9. Example 39

Solve the equation
\[y'' + y' + 3y = 0 \]
with initial conditions \(y(0) = 1 \), and \(y'(0) = 1 \).

IV.3 • 10. Example 40

a. Consider the equation \(y'' + 2ay' + a^2y = 0 \). Show that the roots of the characteristic equation are \(r_1 = r_2 = -a \) so that one solution of the equation is \(e^{-at} \).

b. Use Abel’s theorem \(W(t) = c e^{-\int p(t) \, dt} \) for \(c \) a constant, and \(p(t) \) in \(y'' + p(t)y' + q(t)y = 0 \) to show that the Wronskian of any two solutions of the given equation is
\[W(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = c_1 e^{-2at}, \]
where \(c_1 \) is a constant.

c. Let \(y_2(t) = e^{-at} \) and use the result of part (b) to obtain a differential equation satisfied by a second solution \(y_2(t) \). By solving this equation, show that \(y_2(t) = te^{-at} \).

IV.3 • 11. Example 41

Use the method of reduction of order to find a second solution of the differential equation
\[t^2 y'' + 2ty' - 2y = 0, \quad t > 0; \quad y_1(t) = t. \]

IV.3 • 12. Example 42

The differential equation
\[y'' + \delta(xy' + y) = 0 \]
arises in the study of turbulent flow of a uniform stream past a circular cylinder.

1. Verify that \(y_1(x) = \exp(-\delta x^2/2) \) is one solution, and then
2. find the general solution in the form of an integral.

IV.3 • 13. Example 43

Consider the differential equation
\[y'' + y = 3 + 4 \sin(2t). \]
Give the general solution.

IV.3 • 14. Example 44

Consider the differential equation
\[y'' + y = \tan t. \]
Find the general solution.

IV.3 • 15. Example 45

Find the general solution to \(y'' - 2y' - 3y = -3te^{-t} \).

IV.3 • 16. Example 46

Find the general solution to \(y'' + y = 3 \sin(2t) + t \cos(2t) \).
Find the general solution to
\[y'' + y' + 4y = 2 \sinh t \]
given that \(\sinh t = (e^t - e^{-t})/2 \).

Solve the equation
\[y'' + 2y' + 5y = t + 2 \sin t, \]
with initial conditions \(y(0) = 1 \), and \(y'(0) = 0 \).

Consider the equation \(y'' - 3y' - 4y = 2e^{-t} \) with
\[\phi_1(t) = e^{-t}, \quad \text{and} \quad \phi_2(t) = e^{4t} \]
solutions to the homogeneous version. Seek a solution to the non-homogeneous equation of the form
\[Y(t) = v(t) \cdot \phi_1(t) = v(t)e^{-t} \]
for some \(v \).
 a. Substitute \(Y, Y' \), and \(Y'' \) into the non-homogeneous equation and show that \(v \) must satisfy \(v'' - 5v' = 2 \).
 b. Let \(w = v' \) and show that \(w' - 5w = 2 \), solving this for \(w \).
 c. Integrate \(w \) to find \(v \) and then show that
\[Y = -\frac{2}{5}te^{-t} + \frac{1}{5}c_1e^{4t} + c_2e^{-t}. \]
The first term on the right-hand side is the desired particular solution of the nonhomogeneous equation. Note that it is a product of \(t \) and \(e^{-t} \).

Consider \(ay'' + by' + cy = g(t) \) where \(a, b, c \) are positive.
Let \(Y_1 \) and \(Y_2 \) be solutions to this. Show that \(Y_1 - Y_2 \to 0 \) as \(t \to \infty \). Is this true if \(b = 0 \)?

Consider the equation \(y'' + by' + cy = g(t) \), and suppose \(r_1 \) and \(r_2 \) (not necessarily distinct nor real) are zeroes of the characteristic polynomial of the corresponding homogeneous equation.
1. Verify that the non-homogeneous differential equation can be written as
\[(D - r_1)(D - r_2)y = g(t) \]
where \(r_1 + r_2 = -b \) and \(r_1r_2 = c \).
2. Let \(u = (D - r_2)y \). Solve \(y'' + by' + cy = g(t) \) by solving the two equations
\[(D - r_1)u = g(t), \quad (D - r_2)y = u(t). \]

Use the method of variation of parameters to find a particular solution to
\[y'' - 5y' + 6y = 2e^t \]

Find the general solution to
\[4y'' + y = 2 \sec(t/2), \quad -\pi < t < \pi. \]
Consider the differential equation, for \(x > 0\),
\[
x^2 y'' + xy' + \left(x^2 - \frac{1}{4}\right)y = g(x)
\]
for \(g\) an arbitrary continuous function.

1. Show
\[
\phi_1(x) = \frac{1}{\sqrt{x}} \sin x, \quad \text{and} \quad \phi_2(x) = \frac{1}{\sqrt{x}} \cos x
\]
are solutions to the homogeneous version.

2. Find the general solution to the non-homogeneous equation.

Solve the equation \(y'' + y' + 10y = 0\); with \(y(0) = 1, y'(0) = 0\).

Solve the initial value problem
\[
y'' + y' + 5y = t - e^{-t},
\]
where \(y(0) = 0\), and \(y'(0) = 0\).

Solve the equation
\[
y'' + 3y = \begin{cases} \, t & \text{if } 0 \leq t \leq 1 \\ \, 1 & \text{if } 1 < t, \end{cases}
\]
where \(y(0) = 1\), and \(y'(0) = 1\).

Solve the equation
\[
x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} + 3y = 0
\]
with initial conditions \(y(2) = 1\) and \(y'(2) = 0\) for \(x \geq 2\).
CHAPTER IV – SECTION 3
Chapter V. Using Linear Algebra

Section V.1. Gaussian Elimination

§ V.1.A. Motivating Gaussian elimination

Our goal here is just to go over Gaussian elimination, a process to invert a matrix. Our setup will be equations of the form $A\vec{v} = \vec{w}$ for a given matrix A, and vectors \vec{v} and \vec{w}. In principle, we would like to say $\vec{v} = A^{-1}\vec{w}$, but not all matrices can be inverted, and even when they can, finding the inverse is sometimes a difficult task. Gaussian elimination is a procedure to find \vec{v} given \vec{w} and A, and in essence, find such an inverse if it exists.

This process can be useful for us in differential equations when looking at higher-order differential equations—i.e. third-order, fourth-order, etc.. In particular, linear, non-homogeneous, differential equations require us to solve the matrix equation

\[
\begin{bmatrix}
\phi_1 & \phi_2 & \cdots & \phi_n \\
\phi_1 & \phi_2 & \cdots & \phi_n \\
\vdots & \vdots & \ddots & \vdots \\
\phi_1 & \phi_2 & \cdots & \phi_n \\
\end{bmatrix}
\begin{bmatrix}
u_1' \\
u_2' \\
\vdots \\
u_n' \\
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
\end{bmatrix},
\]

where W is the Wronskian matrix. Solving this gives $Y = u_1\phi_1 + \cdots + u_n\phi_n$ as a particular solution: the n^{th}-order version of variation of parameters. Things get more complicated especially when we consider systems of differential equations. For more information about this, consider Chapter VI.

§ V.1.B. Motivation from systems of equations

Recall that with just a couple linear equations

\[
Ax + By = N \\
Cx + Dy = M,
\]

we can solve the equation by adding and subtracting the respective equalities from each other, yielding the following as an example.

V.1.B • 1. Example 59

Consider the system of equations

\[
\begin{align*}
-x + 3y &= 5 \\
2x + 5y &= 10.
\end{align*}
\]

Procedure • :

Adding “twice the first equation” to the second equation means that we can conclude

\[
(2x + 5y) + 2(-x + 3y) = 10 + 2 \cdot 5
\]

\[
11y = 20 \quad \rightarrow \quad y = 20/11.
\]

Using this result, the first equation then says $-x + 60/11 = 5$, i.e. $x = 5/11$.

41
This can allow us to quickly solve the equations if the coefficients are nice enough like here. Gaussian elimination is just reformulating this idea in the context of matrices.

Matrix Procedure:

We could instead write the setup for this example as the matrix equation

\[
\begin{bmatrix}
1 & 3 \\
2 & 5 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
5 \\
10 \\
\end{bmatrix}
\]

the idea of “adding twice the first equation to the second” just means multiplying by the matrix

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
0 & 0 \\
2 & 0 \\
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
5 \\
20 \\
\end{bmatrix}
\]

This transforms our matrix equation into

\[
\begin{bmatrix}
1 & 0 \\
2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
-1 & 3 \\
2 & 5 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
2 & 1 \\
\end{bmatrix}
\begin{bmatrix}
5 \\
10 \\
\end{bmatrix}
\]

which expresses the same equality as before: $11y = 20$. We can then multiply by a scaling matrix, and so yield the equality below.

\[
\begin{bmatrix}
-1 & 0 \\
0 & 1/11 \\
\end{bmatrix}
\begin{bmatrix}
-1 & 3 \\
0 & 11 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
-1 & 0 \\
0 & 1/11 \\
\end{bmatrix}
\begin{bmatrix}
5 \\
20 \\
\end{bmatrix}
\]

adding thrice the second row to the first then yields

\[
\begin{bmatrix}
1 & 3 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & -3 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 3 \\
0 & 1 \\
\end{bmatrix}
\begin{bmatrix}
-5 \\
20/11 \\
\end{bmatrix}
\]

In other words, $x = 5/11$, and $y = 20/11$.

This has just been motivation, however. We still need to explicitly lay out the process.

§ V.1.C Setting up Gaussian elimination

Our goal is to manipulate the matrix equation

\[
\begin{bmatrix}
a_{11} & \cdots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn} \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
b_1 \\
\vdots \\
b_n \\
\end{bmatrix}
\]

into

\[
\begin{bmatrix}
1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1 \\
\end{bmatrix}
\begin{bmatrix}
x_1 \\
\vdots \\
x_n \\
\end{bmatrix}
=
\begin{bmatrix}
c_1 \\
\vdots \\
c_n \\
\end{bmatrix}
\]

for some c_1, \cdots, c_n. Note that this equation on the right is just saying $\vec{x} = \vec{c}$. We do this by applying three operations multiple times. All of these operations are just multiplying both sides of the equation by an invertible matrix on the left.

V.1.C.1. Definition 16

An elementary row operation on a matrix is an operation that

1. scales a row;
2. adds (a multiple of) one row to another; or
3. switches two rows.

Note that these operations can be accomplished by multiplying by a certain invertible matrix on the left. This allows us to transform matrices into other matrices which are much nicer to work with. In particular, we will care about reduced row echelon form.
An entry a in a matrix A is a leading coefficient iff it is the first non-0 entry in its row of A.

A matrix A is in reduced row echelon form iff

1. every leading coefficient of A is 1;
2. every leading coefficient has only 0s in its column;
3. every row’s leading coefficient appears to the right of higher rows’; and
4. rows with only 0s appear at the bottom.

All the following are examples of matrices in reduced row echelon form (‘⋆’ just represents some entry that doesn’t need to be 0)

\[
\begin{bmatrix}
1 & ⋆ & 0 & ⋆ & ⋆ & 0 \\
0 & 0 & 1 & ⋆ & ⋆ & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\begin{bmatrix}
1 & 0 & ⋆ \\
0 & 1 & ⋆ \\
0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}.
\]

All the following are examples of matrices that are not in reduced row echelon form.

\[
\begin{bmatrix}
1 & ⋆ & ⋆ & ⋆ & ⋆ & 0 \\
0 & 1 & ⋆ & ⋆ & ⋆ & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\begin{bmatrix}
0 & 1 & ⋆ \\
1 & 0 & ⋆ \\
0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
1 & ⋆ \\
0 & 0 \\
0 & 0 \\
\end{bmatrix}.
\]

The first isn’t since row 2’s leading coefficient has a non-0 entry right above it. The second isn’t because the second row’s leading coefficient appears to the left of the first row’s. The third isn’t because the there is a row of 0s which doesn’t appear at the bottom.

This is all the background we need to get actually define the method of Gaussian elimination.

§ V.1.D. The method of Gaussian elimination

So this is the setup to Gaussian elimination: we have a matrix equation $Ax = b$, and we want to transform A into reduced row echelon form by way of elementary row operations.

Consider the equation $A \cdot x = b$ for a given matrix A, given vector b, and vector of variables x.

Gaussian elimination is the process of transforming the matrix $[A|b]$—just the entries of A next to the entries of b—by applying elementary row operations into reduced row echelon form.

Often it’s useful to instead do the process on a different matrix that combines A and b. Looking back to Example 59 (V.1.B • 1), we can again go through the process, starting with

\[
\begin{bmatrix}
-1 & 3 & 5 \\
2 & 5 & 10 \\
\end{bmatrix}
\]

and doing the same operations as before:

\[
\begin{bmatrix}
-1 & 3 & 5 \\
2 & 5 & 10 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
-1 & 3 & 5 \\
0 & 11 & 20 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & -3 & -5 \\
0 & 1 & 20/11 \\
\end{bmatrix} \rightarrow \begin{bmatrix}
1 & 0 & 5/11 \\
0 & 1 & 20/11 \\
\end{bmatrix}.
\]

Very useful is the following result, which tells us that—if we can invert the matrix—Gaussian elimination takes us all the way to the answer we want: it solves the equation.

\footnote{going from left to right}
V.1.D • 2. Result 22 (Gaussian elimination on invertible matrices)

Let A be an invertible matrix, and b a vector. Consider the equation $A \cdot x = b$, where x is a vector of variables.

Let R be the result of doing Gaussian elimination to A, and \vec{c} the result of this process applied to b.

Thus R is the identity matrix, and $x = \vec{c}$.

Proof

It turns out (unproven here) that the reduced row echelon form of a matrix is unique in the sense that there is only one matrix P such that some non-zero matrix M has $M \cdot A = P$ in reduced row echelon form.

Given that A is invertible, $A^{-1} \cdot A = \text{Id}$ is in reduced row echelon form, and so $R = \text{Id}$. So the process of doing Gaussian elimination is the same as applying A^{-1}. Thus $\vec{c} = A^{-1}b = x$. ⊢

If we can invert the matrix, we have a pretty simple idea to solve the equation. The idea generalizes easily from the 3×3 case. Suppose we have the augmented matrix

$$
\begin{bmatrix}
* & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
$$

First, we just scale the first row so that the first entry becomes 1:

$$
\begin{bmatrix}
1 & * & * \\
* & * & * \\
* & * & * \\
\end{bmatrix}
$$

Now we subtract the appropriate amount of row 1 from the other two rows to clear out the first column:

$$
\begin{bmatrix}
1 & * & * \\
0 & * & * \\
0 & * & * \\
\end{bmatrix}
$$

Now we do the same thing for the second column, working with the second row:

$$
\begin{bmatrix}
1 & * & * \\
0 & * & * \\
0 & * & * \\
\end{bmatrix} \mapsto \begin{bmatrix}
1 & * & * \\
0 & 1 & * \\
0 & * & * \\
\end{bmatrix} \mapsto \begin{bmatrix}
1 & 0 & * \\
0 & 1 & * \\
0 & 0 & * \\
\end{bmatrix},
$$

and then the same for the third. The general process is to scale to 1, and then clear out the rest of the column. This allows us to work with the other columns more easily. In a similar way, switching rows can be helpful, like if there is already a 1 in the first column. Switching that row and the first row would put a 1 in the top left, and so you wouldn’t need to scale. Similarly, if just through a simple addition/subtraction of a row, we can get a 1, that may be easier than scaling. Ultimately, we’ll arrive at the same answer, but the computations involved are already tedious, and involving fractions can make it more-so, so there’s a bit of a disincentive to scale if we don’t have to. We also don’t need to start with the first column: we can do them in any order.

Note that we can also generalize this process to find the inverse of a matrix directly (if there is an inverse). In particular, we can find the first column of the inverse matrix by solving

$$
A \cdot x = [1 \ 0 \ \cdots \ 0]^T.
$$

Similarly, we can find the second column of the inverse matrix, and then the third, fourth, etc. through the same sort of process, solving for x in each of these. But note that we can absorb this iterative process into just one process, solving

$$
A \cdot X = \text{Id}.
$$

So instead of starting with many augmented matrices $[A \mid e]$ for some vector e—a bunch of 0s and one 1—we can start with the augmented matrix below, and go as before to turn this into reduced row echelon form; turning A into Id.

$$
[A \mid \text{Id}] = \begin{bmatrix}
a_{11} & \cdots & a_{1n} & 1 & 0 \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & a_{nn} & 0 & 1 \\
\end{bmatrix}.
$$

44
Section V.2. Matrices

There are a few fundamental operations on matrices we will be looking at, namely multiplication, addition, scaling, transposition, and conjugation. These are defined as follows.

V.2.1. Definition 19

Consider the matrix A, where the i,jth slot is a_{ij}. This is written $A = (a_{ij})_{i,j}$. Here i refers to the row, and j to the column.

Consider the matrices $A = (a_{ij})_{i,j}$, and $B = (b_{ij})_{i,j}$. Let k be a constant.

1. $A + B = (a_{ij} + b_{ij})_{i,j}$, i.e. the matrix where we add the corresponding entries.
2. $kA = (ka_{ij})_{i,j}$, i.e. the matrix where we scale all the entries.
3. $A \cdot B$ is given by the following:
 \[
 A \cdot B = \left(\sum_k a_{ik}b_{kj} \right)_{i,j} .
 \]
4. A^\top, the transpose, is $(a_{ji})_{i,j}$.
5. \tilde{A}, the conjugate, is $(\overline{a}_{ij})_{i,j}$, taking the complex conjugate of all the entries.
6. $A^* = (A^\top) = (\tilde{A})^\top$, taking the conjugate and transposing (in either order).

Matrix multiplication can be understood as successive multiplication of columns and rows. Consider the equality

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & j
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
= [ax + by + cz].
\]

We can then define matrix multiplication of a full matrix by doing this row by row on the left:

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & j
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix}
= [ax + by + cz].
\]

Now we can define full matrix multiplication by doing this column by column on the right

\[
\begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & j
\end{bmatrix}
\begin{bmatrix}
 x_1 & x_2 & x_3 \\
 y_1 & y_2 & y_3
\end{bmatrix}
= [ax_1 + by_1 + cz_1, ax_2 + by_2 + cz_2, ax_3 + by_3 + cz_3].
\]

Matrix multiplication can be understood as composition, though this isn’t so important for us. For example, suppose $a = 2x - y$ and $b = 5x + y$, and $v = a + b$, $w = -2a - b$. These are represented by the matrix equations

\[
\begin{bmatrix}
 a \\
 b
\end{bmatrix}
= \begin{bmatrix}
 2 & -1 \\
 5 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix},
\]

\[
\begin{bmatrix}
 v \\
 w
\end{bmatrix}
= \begin{bmatrix}
 1 & 1 \\
 -2 & -1
\end{bmatrix}
\begin{bmatrix}
 a \\
 b
\end{bmatrix}.
\]

If we wanted to write v and w in terms of x and y instead of a and b, we would get

\[
v = (2x - y) + (5x + y) = 7x + 0y, \quad w = -2(2x - y) - (5x + y) = -9x + y,
\]

which, when represented as a matrix equation, is precisely what we get when we multiply the matrices:

\[
\begin{bmatrix}
 v \\
 w
\end{bmatrix}
= \begin{bmatrix}
 1 & 1 \\
 -2 & -1
\end{bmatrix}
\begin{bmatrix}
 a \\
 b
\end{bmatrix}.
\]

Inverting a matrix is also a kind of operation, but only exists for certain matrices, namely those which are invertible. This has been covered in Section V.1, where Gaussian elimination is a method to find the inverse of a matrix.

We have one last definition for looking at matrices: the determinant. The determinant is very useful mostly for its
properties, which actually determine the function\(^1\). Note also that the determinant is only defined for square matrices. Below are just some properties of the determinant.

V.2 • 2. Result 23

For square matrices \(A\) and \(B\), of size \(n \times n\),

\[
\begin{align*}
\det(\text{Id}) &= 1 \\
\det(A) &= a_{11} \cdot a_{22} \cdot a_{33} \cdots a_{nn}, \text{ if } A \text{ is triangular,} \\
\det(A^T) &= \det(A) \\
\det(A \cdot B) &= \det(A) \cdot \det(B) \\
\det(cA) &= c^n A \\
\det(A) &= 0 \text{ if two rows or columns of } A \text{ are the same.}
\end{align*}
\]

The precise definition of the determinant is given below.

V.2 • 3. Definition 20

Let \(A = (a_{ij})_{i,j}\) be an \(n \times n\) matrix. The determinant of \(A\) is given by

\[
\det(A) = \sum_{i_1, j_1=1}^{n} \pm a_{i_1,j_1} \cdots a_{i_n,j_n},
\]

where the sign of \(\pm\) is given by the indices. In other words, we sum up all products of elements, where only one element from each row and column is chosen at a time, and either add or subtract this.

This hasn’t actually defined the determinant completely, so the following are the determinants of \(2 \times 2\) and \(3 \times 3\) matrices in general.

\[
\begin{align*}
\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} &= ad - bc \\
\det \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} &= a_1(b_2c_3 - c_2b_3) + b_1(c_2a_3 - a_2c_3) + c_1(a_2b_3 - b_2a_3).
\end{align*}
\]

Section V.3. Linear Algebra

§ V.3.A. Linear independence

First we have the notion of linear independence\(^2\).

\(^1\)Just like how integration on continuous functions is uniquely defined by agreeing with the area of rectangles, and adding over disjoint intervals

\(^2\)Almost everything in this section is discussing finite dimensional vector spaces. Generalizing to infinite dimensional ones requires slight changes to all this terminology in the way that I’ve written it here.
V.3.A • 1. Definition 21

Let \(v_0, v_1, \ldots, v_n \) be vectors, and \(c_1, \ldots, c_n \) be constants which aren’t all just 0. Consider the equation

\[
 c_1 v_0 + \cdots + c_n v_n = \vec{0}.
\]

If there are \(c_1, \ldots, c_n \) where this is true—except trivially when all are 0—then the vectors \(v_0, v_1, \ldots, v_n \) are said to be linearly dependent.

If this is always false—there are no \(c_1, \ldots, c_n \) except trivially when all are 0—then \(v_0, v_1, \ldots, v_n \) are said to be linearly independent.

Being linearly independent just means you can’t write one of the vectors in terms of the others by adding and scaling. Note that this is a property of collections of vectors, not the vectors themselves. \(\langle 1, 0 \rangle \) and \(\langle 0, 1 \rangle \) are linearly independent, but \(\langle 1, 0 \rangle, \langle 0, 1 \rangle, \langle 1, 1 \rangle \) are linearly dependent, since

\[
 \langle 1, 1 \rangle = \langle 1, 0 \rangle + \langle 0, 1 \rangle + \langle 0, 0 \rangle.
\]

Testing linear independence can be done in a variety of ways. Note that the fundamental equation that we care about is

\[
 c_1 v_0 + \cdots + c_n v_n = \vec{0}.
\]

If we regard the vectors \(v_i \) as column vectors, this is just the matrix equation

\[
 \begin{bmatrix}
 c_0 \\
 \vdots \\
 c_n
 \end{bmatrix}
 \begin{bmatrix}
 v_0 \\
 \vdots \\
 v_n
 \end{bmatrix}
 = \begin{bmatrix} 0 \\ \vdots \end{bmatrix}.
\]

On the left, each column is given by the \(v_i \) vectors, you might call each column the transpose of the vector.

V.3.A • 2. Result 24

Let \(A \) be a matrix. Thus \(\det(A) = 0 \iff Ax = \vec{0} \) has a non-\(\vec{0} \) solution.

So to determine whether vectors are linearly independent, it’s enough to either calculate the determinant of the matrix of column vectors \([v_0 \cdots v_n] \):

\[
 \det[v_0 \cdots v_n] = 0 \iff \text{there is some } c_0, \ldots, c_n \text{ so that the above equality holds.}
\]

Alternatively, we can proceed by Gaussian elimination to attempt to find such \(c_0, \ldots, c_n \). If we end up only with \(c_0 = \cdots = c_n = 0 \), then we know that the vectors are linearly independent. Consider the following tests we then have.

V.3.A • 3. Result 25

A set of vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) is linearly independent iff one of the three equivalent conditions holds:

1. \(\det\begin{bmatrix} \vec{v}_1 \\ \vdots \\ \vec{v}_n \end{bmatrix} \neq 0; \)

2. \(\det\begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix} \neq 0; \)

3. \(\begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix} \vec{c} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \) only has the solution \(\vec{c} = \vec{0} \).

We have the same sort of characterization for linear dependence.
A set of vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \) is linearly dependent iff one of the three equivalent conditions holds:

1. \(\det \begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix} = 0; \)
2. \(\det \begin{vmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{vmatrix} = 0; \)
3. \(\begin{bmatrix} \vec{v}_1 & \cdots & \vec{v}_n \end{bmatrix} \vec{c} = \begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} \) has a non-\(\vec{0} \) solution for \(\vec{c} \).

If we want an actual relationship between \(\vec{v}_1, \ldots, \vec{v}_n \), the solution of the third condition gives us one:

\[c_1 \vec{v}_1 + \cdots + c_n \vec{v}_n = \vec{0}. \]

§ V.3.B. Eigenvalues and eigenvectors

An eigenvector is a vector which is only scaled by a given matrix. An eigenvalue is how much that vector is scaled by.

Let \(A \) be a matrix. Consider the equation for \(\vec{v} \neq \vec{0} \)

\[A \cdot \vec{v} = \lambda \vec{v}. \]

\(\lambda \) is an eigenvalue for \(A \). \(\vec{v} \) is an eigenvector for \(A \) corresponding to the eigenvalue \(\lambda \).

Eigenvalues and eigenvectors will prove to be important for us later. Finding them can be a tricky process.

Let \(A \) be a square matrix. Thus \(\lambda \) is an eigenvalue iff

\[\det(A - \lambda \text{Id}) = 0. \]

\(\vec{v} \) is an eigenvector iff there is some eigenvalue \(\lambda_i \) where

\[(A - \lambda_i \text{Id}) \cdot \vec{v} = \vec{0}. \]

Proof. \(\because \)

\[\lambda \) is an eigenvalue iff there is some non-\(\vec{0} \) \(\vec{v} \) where \(A \cdot \vec{v} = \lambda \vec{v} \). This is equivalent to \(\vec{0} = A\vec{v} - \lambda \vec{v} = (A - \lambda \text{Id})\vec{v} \).

By Result 24 (V.3.A • 2), this happens iff \(\det(A - \lambda \text{Id}) = 0 \).

\(\vec{v} \) is an eigenvector iff there is an eigenvalue where \(A = \lambda \vec{v} \). Moving to the other side and factoring yields that this is equivalent to \((A - \lambda_i \text{Id})\vec{v} = \vec{0} \)

So we just need to solve the polynomial equation \(\det(A - \lambda \text{Id}) = 0 \) for various \(\lambda \). Now if we know all the eigenvalues, \(\lambda_1, \lambda_2, \ldots, \) and \(\lambda_n \), we can find the eigenvectors associated with each eigenvalue. Finding the eigenvectors is a simple matter of using Gaussian elimination to solve the equation

\[(A - \lambda \text{Id})\vec{v} = \vec{0} \]

for \(\vec{v} \), given the eigenvalue \(\lambda_i \). It’s important to note that with different eigenvalues we get different eigenvectors. So to get all the eigenvectors, we must consider all the eigenvalues, and solve this equation many times for differing \(\lambda_i \)s.

\[\text{iii} \]

iii to see this, suppose \(\vec{v} \) were an eigenvector associated to \(\lambda_1 \) and \(\lambda_2 \). Apply \(A \), and get that \(A\vec{v} = \lambda_1 \vec{v} = \lambda_2 \vec{v} \), which means \((\lambda_1 - \lambda_2)\vec{v} = \vec{0} \). Since \(\vec{v} \neq \vec{0} \), and \(\lambda_1 - \lambda_2 \neq 0 \), we get a contradiction, meaning there can be no such \(\vec{v} \).
Note that there will not be a unique solution, since if v is an eigenvector, so is $2v$, and πv, and any cv for a constant $c \neq 0$. To see this, note that

$$A(cv) = cAv = c\lambda v = \lambda(cv)$$

for some eigenvalue λ.
Section V.4. Examples and Exercises

V.4 • 1. Example 60
Consider the matrix equation
\[
\begin{bmatrix}
3 & -1 & -1 \\
-2 & 1 & -2 \\
4 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
= \begin{bmatrix}
-8 \\
-3 \\
30
\end{bmatrix}
\]
Use Gaussian elimination to solve for \(x, y, z\).

V.4 • 2. Example 61
Solve the matrix equation
\[
\begin{bmatrix}
-6 & 12 & 21 \\
-1 & 5 & 3 \\
3 & -9 & -15
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}
= \begin{bmatrix}
77 \\
18 \\
-52
\end{bmatrix}
\]

V.4 • 3. Example 62
Solve the matrix equation
\[
\begin{bmatrix}
-2 & 4 & -3 & 1 \\
-3 & 2 & 2 & 3 \\
5 & 5 & 7 & -1 \\
-2 & -1 & 3 & 5
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
t
\end{bmatrix}
= \begin{bmatrix}
-42 \\
-19 \\
33 \\
13
\end{bmatrix}
\]

V.4 • 4. Example 63
Find the inverse of the matrix
\[
\begin{bmatrix}
4 & 3 \\
2 & -6
\end{bmatrix}
\]

V.4 • 5. Example 64
Find the inverse of the matrix
\[
\begin{bmatrix}
-1 & 6 & 3 \\
2 & 2 & 4 \\
6 & -3 & 5
\end{bmatrix}
\]

V.4 • 6. Example 65
Solve the system of equations, or show that there is no solution.
\[
\begin{align*}
x_1 + 2x_2 - x_3 &= 1 \\
2x_1 + x_2 + x_3 &= 1 \\
x_1 - x_2 + 2x_3 &= 1
\end{align*}
\]

V.4 • 7. Example 66
Solve the system of equations, or show that there is no solution.
\[
\begin{align*}
x_1 + 2x_2 - x_3 &= 2 \\
2x_1 + x_2 + x_3 &= 1 \\
x_1 - x_2 + 2x_3 &= -1
\end{align*}
\]
V.4 • 8. Example 67

Determine whether the vectors

\[x(t) = (e^{-t}, 2e^{-t}) \quad y(t) = (e^{-t}, e^{-t}) \quad z(t) = (3e^{-t}, 0) \]

are linearly independent for \(-\infty < t < \infty\).

V.4 • 9. Example 68

Find all the eigenvalues and eigenvectors of the matrix

\[
\begin{bmatrix}
5 & -1 \\
3 & 1
\end{bmatrix}
\]

V.4 • 10. Example 69

Find the eigenvalues and eigenvectors of the matrix

\[
A = \begin{bmatrix}
-2 & 1 \\
1 & -2
\end{bmatrix}
\]

V.4 • 11. Example 70

Suppose that \(Ax = 0\) for some vector \(x \neq 0\). Show there is some \(y \neq 0\) where \(A^*y = 0\).

V.4 • 12. Example 71

Solve the system of equations

\[
\begin{align*}
x - 2y + z + u &= 1 \\
2x + y - z - 2u &= 2 \\
3x + 3y + 0z + 2u &= 3 \\
x + y + z + u &= 4
\end{align*}
\]

by Gaussian elimination.

V.4 • 13. Example 72

1. Solve by Gaussian elimination the system

\[
\begin{align*}
x + 2y - z + u &= 0 \\
2x - y + 3z + 2u &= 2 \\
x - 3y + z - u &= 3 \\
x + y - z + u &= a.
\end{align*}
\]

2. For what value of \(a\) does \(u = 0\)?
Chapter VI. Linear Systems of Differential Equations

We will look at differential equations which make statements about multiple functions. Most of the time, these functions will interact in some way, in the sense that the equalities depend on their values together.

In particular, we have the following definition for what we mean by a “system of differential equations”.

VI • 1. Definition 23

A system of differential equations is a sequence of equations of the form

\[x_1' = F_1(x_1, \ldots, x_n, t) \]
\[x_2' = F_2(x_1, \ldots, x_n, t) \]
\[\vdots \]
\[x_n' = F_n(x_1, \ldots, x_n, t). \]

A solution to such a system is a sequence of functions \(x_1(t), x_2(t), \ldots, x_n(t) \) which satisfy those equations.

We will be interested in equations that are linear in form, as well as those which are homogeneous. These definitions are analogous to those in a single variable, and with the language of matrices, these definitions become practically the same. This is because a system of linear differential equations will be a sequence of equations

\[x_1' = p_{11}(t)x_1 + \cdots + p_{1n}(t)x_n + g_1(t) \]
\[x_2' = p_{21}(t)x_1 + \cdots + p_{2n}(t)x_n + g_2(t) \]
\[\vdots \]
\[x_n' = p_{n1}(t)x_1 + \cdots + p_{nn}(t)x_n + g_n(t). \]

This can then be represented by the matrix equation

\[
\begin{bmatrix}
 x_1' \\
 \vdots \\
 x_n'
\end{bmatrix} =
\begin{bmatrix}
 p_{11}(t) & \cdots & p_{1n}(t) \\
 \vdots & \ddots & \vdots \\
 p_{n1}(t) & \cdots & p_{nn}(t)
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{bmatrix} +
\begin{bmatrix}
 g_1(t) \\
 \vdots \\
 g_n(t)
\end{bmatrix},
\]

for various functions \(p_{ij} \) and \(g_i \) where \(i, j \leq n \). In other words,

\[z' = A(t) \cdot z + G(t), \]

for matrices of functions \(A(t) \) and \(G(t) \). The derivative \(z' \) is just component-wise: we differentiate each entry in \(z \).

VI • 2. Definition 24

A system of differential equations is linear iff it is of the form

\[z' = A(t) \cdot z + G(t), \]

for matrices of functions \(A(t) \) and \(G(t) \), and vector of variables \(z \).

A system of differential equations is homogeneous iff \(G(t) \) is constantly 0 above: it’s of the form

\[z' = A(t) \cdot z. \]

So in the case that \(A \) is a constant matrix—i.e. just filled with constants—this situation simplifies considerably, as we’ll see later.

For now, these equations can be useful for thinking about higher order differential equations, since we can go back and
Chapters VI – Section 1

forth between the two for systems of linear equations.

VI.3. Result 28

Every linear n-th order differential equation can be represented as a system of linear differential equations of n variables, and the reverse holds under certain conditions.

Proof

For one direction, consider the linear n-th order differential equation

$$p_n(t)x^{(n)} + \cdots + p_1(t)x' + p_0(t)x = g(t).$$

The system of differential equations

\[
\begin{align*}
x &= x_0 \\
x_0' &= x_1 \\
x_1' &= x_2 \\
\vdots \\
x_{n-2}' &= x_{n-1} \\
p_n(t)x_{n-1}' + p_{n-1}(t)x_{n-1} + \cdots + p_1(t)x_1 + p_0(t)x_0 &= g(t)
\end{align*}
\]

then represents the n-th order differential equation, since x_i just represents the ith derivative of x.

The other direction is a lengthy process of differentiating equations, solving for a variable to reduce to fewer variables, and so on until we finish. So this will be a proof by example in the 2×2 case in Appendix A.

Section VI.1. Homogeneous Systems with Constant Coefficients

When dealing with systems of differential equations, a base case to consider is when the equations are linear, meaning of the form

$$z' = A(t) \cdot z + G(t)$$

for matrices A and G depending on t. To simplify this situation, we will consider for now equations where these are constant, and where $G = 0$. In other words, the equation

$$z' = A \cdot z$$

for some (constant) matrix A. To simplify the situation even further, we'll work just with 2×2 systems for now.

VI.1.1. Result 29

Let A be a 2×2 matrix, and $z(t)$ a vector. Consider the differential equation

$$z' = A \cdot z.$$

Suppose A has distinct eigenvalues λ_1 and λ_2 with some associated eigenvectors v and w respectively. Thus solutions to the above differential equation are of the form

$$z(t) = Cve^{\lambda_1 t} + Dwe^{\lambda_2 t},$$

for some constants C and D.

Proof

The proof of this can be found in Appendix A

This generalizes to complex valued eigenvectors and eigenvalues, but often we want to work only with real-valued
functions. In this case, we can simplify the answer using Euler’s formula, and choosing different constants.

VI.1 • 2. Result 30

Let \(A \) be a \(2 \times 2 \) matrix with real entries, and \(z(t) \) a vector. Consider the differential equation

\[
z' = A \cdot z.
\]

Suppose \(A \) has complex eigenvalue \(a + ib \) \((b \neq 0)\) and associated eigenvector \(\vec{v} + i\vec{w} \).

Thus the eigenvectors of \(A \) are \(a \pm ib \) with eigenvectors \(\vec{v} \pm i\vec{w} \), and solutions to the differential equation are

\[
z(t) = Ce^{at}(\vec{v}\cos(bt) - \vec{w}\sin(bt)) + De^{at}(\vec{v}\sin(bt) + \vec{w}\cos(bt)),
\]

for some constants \(C \) and \(D \).

Unfortunately, this is the simplest we can do. In the single variable case we get \(Ce^{at}\sin(bt) + De^{at}\cos(bt) \), which corresponds to this under certain choices of \(C, D, \) and scaling \(\vec{v} \) and \(\vec{w} \). Unfortunately, this just makes the other entry in \(z \) uglier. So to be fair, both are given an equal amount of ugliness. In practice, however, the ugliness will often be skewed towards one solution with the other being merely \(Ce^{at}\sin(bt) + De^{at}\cos(bt) \).

Just like with a single variable, if there is only one eigenvalue—or solution to the characteristic equation in the case of a single variable—the solution isn’t necessarily like in Result 29 (VI.1 • 1). And the result isn’t so simply stated: the solution actually depends on whether the eigenvectors are linearly independent, and we get a somewhat different form from Result 29 (VI.1 • 1) if they are linearly dependent.

VI.1 • 3. Result 31 (2×2 Systems)

Let \(A \) be a \(2 \times 2 \) matrix, and \(z(t) \) a vector. Consider the differential equation

\[
z' = A \cdot z.
\]

Suppose \(A \) has eigenvalue \(\lambda_1 \) with eigenvector \(\vec{v}_1 \neq \vec{0} \), and eigenvalue \(\lambda_2 \) with eigenvector \(\vec{v}_2 \neq \vec{0} \).

1. If \(\lambda_1 \neq \lambda_2 \), then
 \[
z(t) = C\vec{v}_1 e^{\lambda_1 t} + D\vec{v}_2 e^{\lambda_2 t}.
 \]
2. If \(\lambda_1 = \lambda_2 = \lambda \), but \(\vec{v}_1 \) and \(\vec{v}_2 \) are linearly independent, then
 \[
z(t) = C\vec{v}_1 e^{\lambda t} + D\vec{v}_2 e^{\lambda t}.
 \]
3. If \(\lambda_1 = \lambda_2 = \lambda \), and \(\vec{v}_1 \) and \(\vec{v}_2 \) are linearly dependent, then
 \[
z(t) = C\vec{v}_1 e^{\lambda t} + D(\vec{v}_2 \cdot t \cdot e^{\lambda t} + me^{\lambda t}),
 \]
 where \(m \) is a vector solving the matrix equation \((A - \lambda \text{Id})m = \vec{v}_2\).

Where \(C \) and \(D \) are constants.

Note that the choice of \(\vec{v}_2 \) in the equation of \(m \) in case (3) was arbitrary. Because \(\vec{v}_1 \) and \(\vec{v}_2 \) were linearly dependent, they were a constant multiple of each other: \(\vec{v}_1 = k\vec{v}_2 \) for some \(k \neq 0 \). In this case, we could just as well say that \(\vec{v} \) is the only eigenvector (up to scaling), and write

\[
z(t) = C\vec{v} e^{\lambda t} + D(\vec{v} \cdot t \cdot e^{\lambda t} + me^{\lambda t})
\]

for \(m \) solving \((A - \lambda \text{Id})m = \vec{v}\). This really just results in absorbing the constant into \(D \). The reason why such an \(m \) pops up is that we need a fundamental set of solutions, just like in the single variable case.

Now as a process of solving such systems, \(2 \times 2 \) Systems (VI.1 • 3) translates to the series of steps:

1. Find the eigenvalues of \(A \).
2. Find the corresponding eigenvectors of \(A \).
3. Determine if the eigenvectors are linearly independent or linearly dependent.

\[\text{In particular, if we fix some row, we're scaling } \vec{v} + i\vec{w} \text{ to make the entry in that row 1, and then dealing with the new eigenvectors where the complex values only occur in the other row.}\]
4. If linearly dependent solve \((A - \lambda \text{Id})m = v\) for an eigenvector \(v\).
5. Use the appropriate solution as in 2 \times 2 Systems (VI.1 \cdot 3).

More concretely, we get the series of steps on how to do the above.

1. Solve \(\text{det}(A - \lambda \text{Id}) = 0\) for \(\lambda\) by solving a polynomial equation.
2. For each \(\lambda\) above, solve \((A - \lambda \text{Id})v = 0\) for \(v\) using Gaussian elimination.
 - If \(\lambda_1 \neq \lambda_2\), then \(z(t) = Cv_1 e^{\lambda_1 t} + Dv_2 e^{\lambda_2 t}\).
 - If \(\lambda_1 = \lambda_2 = \lambda\), but \(v_1\) and \(v_2\) aren’t multiples of each other, then \(z(t) = Cv_1 e^{\lambda t} + Dv_2 e^{\lambda t}\).
3. If there is only one \(v\) up to scaling, then solve \((A - \lambda \text{Id})m = v\) for \(m\) using Gaussian elimination.
 - In this case, \(z(t) = Cve^{\lambda t} + D(v \cdot t \cdot e^{\lambda t} + me^{\lambda t})\).

Note that having one eigenvalue with linearly independent eigenvectors is pretty rare. In fact, for the 2 \times 2 case, this happens only when \(A\) is a multiple of the identity matrix\(^{ii}\).

Let’s continue with 2 \times 2 systems for a moment to deal with complex values.

VI.1 \cdot 4. Result 32 (Complex 2 \times 2 Solutions)

Let \(A\) be a 2 \times 2 matrix with real entries, and \(z(t)\) a vector. Consider the differential equation
\[
z' = A \cdot z.
\]
Suppose \(A\) has complex eigenvalue \(a + ib\) \((b \neq 0)\) and associated eigenvector \(v + iw\).

Thus the eigenvectors of \(A\) are \(a + ib\) with eigenvectors \(v \pm iw\), and solutions to the differential equation are
\[
z(t) = C e^{at}(v \cos(bt) - w \sin(bt)) + D e^{at}(v \sin(bt) + w \cos(bt)),
\]
for some constants \(C\) and \(D\).

Showing all of these facts can be done just by converting them into homogeneous equations with constant coefficients, each of a single variable, and then solving them in the usual way we do there. In the case of complex eigenvalues, we merely use Euler’s formula, and change the constants to remove any \(i\).

Let’s generalize this idea to \(n \times n\) systems. Most larger systems will still be fairly small. Even the small 3 \times 3 is still computationally difficult to deal with. But the ideas from the 2 \times 2 systems generalize to \(n \times n\) systems easily in the case that the eigenvalues are distinct.

VI.1 \cdot 5. Result 33 (\(n \times n\) systems)

Let \(A\) be an \(n \times n\) matrix, and \(z(t)\) a vector. Consider the differential equation
\[
z' = Az.
\]
Suppose \(A\) has eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n\)—which aren’t necessarily different—with corresponding eigenvectors \(v_1, v_2, \ldots, v_n\).

If the eigenvectors \(v_1, \ldots, v_n\) are linearly independent or the eigenvalues \(\lambda_1, \ldots, \lambda_n\) are all distinct, then
\[
z(t) = C_1v_1 e^{\lambda_1 t} + C_2v_2 e^{\lambda_2 t} + \cdots + C_n v_n e^{\lambda_n t},
\]
for constants \(C_1, \ldots, C_n\).

\(^{ii}\) To see this, otherwise \(A - \lambda \text{Id}\) isn’t the 0 matrix. And thus we have an equation with at least one unknown: \((A - \lambda \text{Id})v = 0\). But then either one variable is fixed (e.g. if one equation only involves one unknown), or \(a\) and \(b\) have some sort of scalar relationship, which tells us that the eigenvectors can’t be linearly independent.
If we have an eigenvalue \(\lambda \) repeated twice with only one (linearly independent) eigenvector, then instead of contributing the term \(C_1 e^{\lambda t} + D_1 te^{\lambda t} \) to \(z(t) \), we add to \(z(t) \)
\[
C_1 e^{\lambda t} + D_1 (v t e^{\lambda t} + m),
\]
where \((A - \lambda \text{Id})^2 m = 0 \neq m \).

If you go on to study more linear algebra, \(m \) is called a generalized eigenvector in that \((A - \lambda \text{Id})^k m = 0 \) for some \(k \).

In the case that \(k = 1 \), satisfying this just means being eigenvector associated to \(\lambda \)—so long as the vector isn’t \(\vec{0} \).

To continue this aside, things get more complicated as more and more eigenvalues are repeated. If an eigenvalue \(\lambda \) is repeated \(n \) times with one eigenvector \(v \) (up to scaling), then instead of adding \(C_1 e^{\lambda t} \) \(n \) times—yielding only one term when we need \(m \)—we add instead
\[
C_1 e^{\lambda t} \sum_{k=1}^{n} \left(m_k \frac{t^k}{k!} \right),
\]
for each \(i \leq n \). Each \(m_k \) is defined by recursion:
\[
m_0 := v_i
\]
\[
m_1 := \text{a solution to } (A - \lambda \text{Id}) m = m_0
\]
\[\vdots\]
\[
m_{k+1} := \text{a solution to } (A - \lambda \text{Id}) m = m_k.
\]

So if we’re working in a \(3 \times 3 \) system, and we have eigenvalues \(\lambda_1 \) and \(\lambda_2 = \lambda_3 \), having eigenvectors \(v_1 \) and \(v_2 \) respectively, then the general solution will be
\[
z(t) = C_1 e^{\lambda_1 t} + D_1 e^{\lambda_2 t}(tv_2 + m).
\]

If we have just one eigenvalue \(\lambda = \lambda_1 + \lambda_2 + \lambda_3 \) with just one eigenvector \(v \), then the solution will be
\[
z(t) = C_1 e^{\lambda t} + C_2 e^{\lambda t}(tv + m_1) + C_3 e^{\lambda t} \left(\frac{t^2}{2} + tm_1 + m_2 \right).
\]

In general, however, it’s simpler to refer to notions of “exponentiation” with matrices defined along the lines of a power series used in the case of real numbers. In this case, \(z' = Az \) has a solution of \(\exp(At)\vec{c} \) for a (column) vector of constants \(\vec{c} \).

Section VI.2. Non-Homogeneous Systems

Many of the results about linear, differential equations—of a single variable—apply also to systems of such equations. In particular, the general solution of a homogeneous \(n \times n \) system is one where we have \(n \) “different enough” solutions \(\phi_1 \) through \(\phi_n \), in that they have a non-zero Wronskian matrix. The general solution in that case is just \(C_1 \phi_1 + \cdots + C_n \phi_n \). If we have a non-homogeneous system, the difference is still a single, particular solution:

VI.2.1. Result 34

Consider the \(n \times n \) linear system of differential equations
\[
z' = A(t) \cdot z + G(t).
\]

Let \(Z(t) \) be any solution to this. Let \(\phi_1, \phi_2, \cdots, \phi_n \) solve the homogeneous version: \(\phi' = A(t) \cdot \phi \).

Thus the general solution is
\[
z(t) = C_1 \phi_1(t) + C_2 \phi_2(t) + \cdots + C_n \phi_n(t) + Z(t)
\]
for constants \(C_1, \ldots, C_n \).
Proof

Consider an arbitrary solution \(z \) of the non-homogeneous differential equation. Consider the function \(\Phi = z - Z \).

Note that then
\[
\Phi' = z' - Z'
= A(t) \cdot z + G(t) - (A(t) \cdot Z + G(t))
= A(t) \cdot (z - Z)
= A(t) \cdot \Phi.
\]

Hence \(\Phi \) is a solution to the homogeneous version. Hence \(\Phi = z - Z \) is of the form
\[
\Phi = C_1 \phi_1 + \cdots + C_n \phi_n + Z.
\]

So to solve non-homogeneous equations, we have similar methods as in the single variable case. In particular, what follows is the \(n \times n \) version of undetermined coefficients.

VI.2.2 Result 35

Consider the \(n \times n \) linear system of differential equations

\[
\begin{align*}
z' &= A \cdot z + G(t) \\
\intertext{If} g(t) &= C_n t^n + \cdots + C_1 t + C_0, \text{ then guess } Y(t) = C_n t^n + \cdots + C_1 t + C_0; \\
g(t) &= \tilde{c} \sin(at), \text{ or } g(t) = \tilde{c} \cos(at), \text{ then guess } Y(t) = \tilde{c} \sin(at) + \tilde{d} \cos(at); \\
g(t) &= \tilde{c} e^{at}, \text{ then guess } Y(t) = \tilde{c} e^{at};
\end{align*}
\]

If this guess doesn’t work—i.e. it’s a solution to the homogeneous version—then keep multiplying the guess by \(t \)—including lower degrees—until it doesn’t.

For example, you might initially guess \(\tilde{c} e^{at} \). If that doesn’t work, you would consider not just \(\tilde{c} te^{at} \), but \(\tilde{c} te^{at} + \tilde{d} e^{at} \).

If that doesn’t work, you would then consider \(\tilde{c}_1 t^2 e^{at} + \tilde{c}_2 te^{at} + \tilde{c}_3 e^{at} \). And so on and so forth until it does work.

Note also that, just like the single variable case, undetermined coefficients can only be used in the case that the linear system has constant coefficients.

Section VI.3. Linearization

There are many more kinds of differential equations beyond just ones of the form

\[
z' = A(t)z + G(t),
\]

for matrix functions \(A \) and \(G \). We really only know, in principle, how to solve them when \(A \) is constant, and \(G \) is nice enough. But more generally, systems of differential equations are of the form

\[
z' = F(t, z),
\]

with no real restrictions on \(F \). Let’s consider the differential equation of this form

\[
z' = \begin{bmatrix} F_1(z) \\ F_2(z) \\ \vdots \\ F_n(z) \end{bmatrix},
\]

where we at least have that each \(F_i \) is differentiable and doesn’t depend on \(t \). We can approximate such a solution using an approximation to the differential equation. To do this, assume \(F(s) = 0 \) at some (vector) value \(s \). Now we use a linear approximation to \(F \) at \(s \), and consider the new, linear system of differential equations around \(s \).

\[\text{ iii beyond the fact that it outputs a vector the size of } z.\]
That’s a lot to take in, so let’s just consider the 2×2 case:

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix} f(x, y) \\ g(x, y) \end{bmatrix}
\]

for differentiable functions f and g. Suppose $f(x_1, y_1) = g(x_1, y_1) = 0$ for numbers x_1 and y_1. Such a point (x_1, y_1) is a critical point for (f, g). Because of this, we have approximations to $f(x, y)$ and $g(x, y)$ near $s = (x_1, y_1)$ by a Taylor approximation: denoting $\frac{\partial f}{\partial x}$ by f_x and so forth,

\[
\begin{align*}
f(x, y) & \approx f(s) + f_x(s)(x-x_1) + f_y(s)(y-y_1) \\
g(x, y) & \approx g(s) + g_x(s)(x-x_1) + g_y(s)(y-y_1)
\end{align*}
\]

Hence we can write a different system of equations whose solution is not the same as before, but which is supposed to approximate the solution to $\dot{z} = F(z)$ when z is near s: choose new variables $u = x - x_1$, $v = y - y_1$, and consider the new system

\[
\begin{bmatrix} u' \\ v' \end{bmatrix} \approx \begin{bmatrix} f_x(s) & f_y(s) \\ g_x(s) & g_y(s) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}.
\]

the system above—replacing \approx with $=-----$ is called the linearization of the original system. The variables u and v are approximations to $x - x_1$ and $y - y_1$ near 0. The matrix on the left is the Jacobian of F, denoted $J(F)$, evaluated at s.

VI.3 · 1. Definition 25

Consider the differential equation

\[
\dot{z} = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} f(x, y) \\ g(x, y) \end{bmatrix} = F(z)
\]

for continuously differentiable functions f and g. Suppose $F(s) = \vec{0}$ for vector $s = (x_1, y_1)$, a critical point of F.

The linearization of $\dot{z} = F(z)$ is the linear system

\[
\dot{w} = J(F)(s) \cdot w = \begin{bmatrix} f_x(x_1, y_1) & f_y(x_1, y_1) \\ g_x(x_1, y_1) & g_y(x_1, y_1) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix},
\]

where $(u, v) = w \approx z - s = (x - x_1, y - y_1)$.

Just like with autonomous differential equations—equations of the form $y' = f(y)$—there is a notion of stability for critical points of $\dot{z} = F(z)$. This notion is slightly complicated by the fact that we have many functions to worry about, but ultimately, the concept is similar. Consider first the simple case of when we’re dealing with homogeneous equations.

So long as $\det(A) \neq 0$, the only critical point of $\dot{z} = Az$ is $z = \vec{0}$. This point is asymptotically stable if solutions z go to this critical point $\vec{0}$ as $t \to \infty$. We know that solutions to such equations are usually of the form

\[
C_1 v_1 e^{\lambda_1 t} + \cdots + C_n v_n e^{\lambda_n t}.
\]

Given that all those $C_i v_i$ are all just constant vectors, the real determiner of where the solutions go is all those $e^{\lambda_i t}$, and so the eigenvalues. If all the eigenvalues have a real part that’s negative, then such solutions go to $\vec{0}$.

So the notion of stability is roughly the same, and it is contingent on whether functions that make up the solution go to 0, or go to ∞. This is really determined by the eigenvalues of the matrix $J(F)(s)$.
Consider the differential equation \(z' = Az \). Let \(\lambda_1 \) and \(\lambda_2 \) be eigenvalues for \(A \).

1. The critical point \(\vec{0} \) is asymptotically stable iff \(e^{\lambda_1 t} \) and \(e^{\lambda_2 t} \) both go to 0 as \(t \to \infty \). In other words, \(\lambda_1 \) and \(\lambda_2 \) (or at least their real part) are negative.
2. The critical point \(\vec{0} \) is stable iff \(e^{\lambda_1 t} \) and \(e^{\lambda_2 t} \) are each constant or have no limit (not \(\infty \), and not 0) as \(t \to \infty \). In other words, \(\lambda_1 \) and \(\lambda_2 \) (or at least their real part) are 0.
3. The critical point \(\vec{0} \) is unstable iff \(e^{\lambda_1 t} \) or \(e^{\lambda_2 t} \) goes to \(\infty \) as \(t \to \infty \). In other words, \(\lambda_1 \) or \(\lambda_2 \) (or at least their real part) is positive.

If we look back at Definition 25 (VI.3 • 1), if \(w = \vec{0} \) is an asymptotically stable critical point of the linearization, then \(w \approx z - s \) goes to \(\vec{0} \) as \(t \to \infty \), i.e. \(z \) converges to \(s \). Similarly, if \(w \) goes to \(\infty \), then \(z - s \) does not go to 0, and so \(z \) diverges from \(s \). This is just to say that by looking at the linearization, we can tell whether solutions near \(z \) converge to \(s \) or not.

Consider the differential equation \(z' = F(z) \) with linearization \(w' = J(F)(s) \cdot w \) around the critical point \(s \). Therefore,

1. the critical point \(z = s \) is asymptotically stable if \(w = \vec{0} \) is; and
2. the critical point \(z = s \) is unstable if \(w = \vec{0} \) is.

Note that this is really all determined by our choice of \(s \). We look at the linearization \((z - s)' \approx A(z - s) \), and see whether \(z - s = \vec{0} \) is an asymptotically stable or unstable critical point, and thus whether solutions \(z \) near \(s \) go to \(s \) or not.
Section VI.4. Examples and Exercises

VI.4 • 1. Example 73
Transform the given initial value problem into an initial value problem for two first-order equations.
\[u'' + p(t)u' + q(t)u = g(t), \quad u(0) = u_0, \quad u'(0) = u'_0. \]

VI.4 • 2. Example 74
Consider the system
\[
\begin{align*}
x'_1 &= -2x_1 + x_2 \\
x'_2 &= x_1 - 2x_2.
\end{align*}
\]
 a. Solve the first differential equation for \(x_2 \).
 b. Substitute the result of (a) into the second differential equation, thereby obtaining a second-order differential equation for \(x_1 \).
 c. Solve the differential equation in (b) for \(x_1 \).
 d. Use (a) and (c) to find \(x_2 \).

§ VI.4.A. 2 × 2 Systems

VI.4.A • 1. Example 75
Solve the differential equation
\[z' = Az = \begin{bmatrix} 3 & 2 \\ -1 & 6 \end{bmatrix} z \]
for the vector function \(z(t) \).

VI.4.A • 2. Example 76
Solve the differential equation
\[z' = Az = \begin{bmatrix} i + 1 & 0 \\ -2 & 3 \end{bmatrix} z \]
for the vector function \(z(t) \).

VI.4.A • 3. Example 77
Solve the differential equation
\[z' = Az = \begin{bmatrix} 8 & 4 \\ -4 & 6 \end{bmatrix} z \]
for the vector function \(z(t) \).

VI.4.A • 4. Example 78 (Two Eigenvalues)
Solve the system of differential equations
\[
\begin{align*}
x' &= 3x + 2y \\
y' &= 2x + 3y,
\end{align*}
\]
with initial conditions \(x(0) = 2 \), and \(y(0) = 12 \).
VI.4.A • 5. Example 79 (One Eigenvalue, Two Eigenvectors)

Solve the system of differential equations

\[
\begin{align*}
x' &= 2x \\
y' &= 2y,
\end{align*}
\]

with initial conditions \(x(0) = 2\), and \(y(0) = 1\).

VI.4.A • 6. Example 80 (One Eigenvalue, One Eigenvector)

Solve the system of differential equations

\[
\begin{align*}
x' &= x + 4y \\
y' &= -4x + 9y,
\end{align*}
\]

with initial conditions \(x(0) = -1\), and \(y(0) = 0\).

VI.4.A • 7. Example 81 (Complex Eigenvalues)

Solve the initial value problem

\[
z' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = Az,
\]

where \(x(0) = -4\), and \(y(0) = 1\).

VI.4.A • 8. Example 82

Solve the system of equations

\[
\begin{align*}
x' &= 3x - y \\
y' &= x + 2y,
\end{align*}
\]

where \(x(0) = 0\), and \(y(0) = 1\).

VI.4.A • 9. Example 83

Solve the system of equations

\[
\begin{align*}
x' &= x - 2y \\
y' &= 2x + y,
\end{align*}
\]

with initial conditions \(x(0) = 1\), and \(y(0) = 1\).

VI.4.A • 10. Example 84

Solve the non-homogeneous system of differential equations

\[
\begin{align*}
x' &= x - y + \sin(t) \\
y' &= y + e^{2t}
\end{align*}
\]
VI.4.A • 11. Example 85

Find the general solution to the system

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 x + y + t \\
 x + 2y
\end{bmatrix}.
\]

VI.4.A • 12. Example 86

Consider the non-linear system of differential equations

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} = \begin{bmatrix}
 x + \cos(y) \\
 x \cdot y \\
 f(x, y) \\
 g(x, y)
\end{bmatrix}.
\]

1. Find the critical points of the system;
2. give the linearization of this around the point \(s = \langle 0, \pi/2 \rangle \);
3. classify the stability that \(s \) has.

VI.4.A • 13. Example 87

Consider the following non-linear system

\[x' = 3x - y + 3y^2\]
\[y' = x + 2y\]

with initial conditions \(x(0) = 1 \), and \(y(0) = 1 \).

1. Find the critical points of the system.
2. Find the linear approximation around each point.
3. One critical point is \(\langle 0, 0 \rangle \). What is the type of this critical point?

 Note: you only need to find the eigenvalues to answer this part.

§ VI.4.B. 3×3 Systems

Now let's consider some 3×3 systems, which are computationally more involved.

VI.4.B • 1. Example 88 (Three Eigenvalues)

Solve the initial value problem

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} = \begin{bmatrix}
 1 & 14 & 12 \\
 -1 & 10 & 6 \\
 1 & -11 & -7
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix} = Az,
\]

where \(z(0) = \langle 0, 3, 1 \rangle \).

VI.4.B • 2. Example 89 (Two Eigenvalues in a 3×3 System)

Solve the initial value problem

\[
\begin{bmatrix}
 x' \\
 y' \\
 z'
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 2 \\
 -1 & -1 & 2 \\
 0 & 16 & -1
\end{bmatrix} \begin{bmatrix}
 x \\
 y \\
 z
\end{bmatrix},
\]

where \(z(0) = \langle 200, 0, 100 \rangle \).
Appendix A. Unnecessary Proofs

A • 1. Result A1

Consider the system of linear differential equations \(z' = A(t) \cdot z + G(t) \) written as
\[
\begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix} = \begin{bmatrix}
a(t) \\
b(t) \\
c(t) \\
d(t)
\end{bmatrix} \cdot \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
g_1(t) \\
g_2(t)
\end{bmatrix}.
\]

If \(b(t) \neq 0 \) and \(c(t) \neq 0 \), we can write
\[
\begin{align*}
\ddot{x} - \left(a + \frac{b'}{b} \right) \dot{x} + \left(ad - bc - a' - \frac{b'}{b} \right) x &= g_1 - \left(\frac{b'}{b} + d \right) g_1 + bg_2 \\
\ddot{y} - \left(d + a + \frac{c'}{c} \right) \dot{y} + \left(da - cb - d' - \frac{c'}{c} \right) y &= g_2 - \left(\frac{c'}{c} + a \right) g_2 + cg_1.
\end{align*}
\]

In the case that \(a, b, c, d \) are all constants, we have
\[
\begin{align*}
\ddot{x} - \text{trace}(A) \dot{x} + \det(A) x &= g_1 - dg_1 + bg_2 \\
\ddot{y} - \text{trace}(A) \dot{y} + \det(A) y &= g_2 - ag_2 + cg_1.
\end{align*}
\]

Proof ...:

Consider the system of linear differential equations \(z = A(t) z + G(t) \), also written
\[
\begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix} = \begin{bmatrix}
a(t) \\
b(t) \\
c(t) \\
d(t)
\end{bmatrix} \cdot \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
g_1(t) \\
g_2(t)
\end{bmatrix}.
\]

Understanding that \(a, b, c, d \) are all functions of \(t \), I will now abandon writing “(t)” for the sake of space. Now the above equality means, so long as we can divide by \(b \) and \(c \),
\[
y = \frac{\dot{x} - ax - g_1}{b}, \quad \frac{\dot{y} - dy - g_2}{c}.
\]

differentiation on the matrix equation yields
\[
z'' = A' z + A z' + G',
\]

which can be written
\[
\begin{bmatrix}
\ddot{x} \\
\ddot{y}
\end{bmatrix} = \begin{bmatrix}
a' \\
b' \\
c' \\
d'
\end{bmatrix} \cdot \begin{bmatrix}
x \\
y
\end{bmatrix} + \begin{bmatrix}
a \\
b \\
c \\
d
\end{bmatrix} \cdot \begin{bmatrix}
\dot{x} \\
\dot{y}
\end{bmatrix} + \begin{bmatrix}
g_1' \\
g_2'
\end{bmatrix}.
\]

substituting the equalities of \(\dot{y}' \) in terms of \(y \), then \(y \) in terms of \(x \) and \(x' \) above, this gives the equations
\[
\begin{align*}
\ddot{x} &= \left(a' + \frac{b'}{b} + cb - ad \right) x + \left(\frac{b'}{b} + a + d \right) \dot{x}' - \left(\frac{b'}{b} + d \right) g_1 + bg_2, \\
\ddot{y} &= \left(d' + \frac{c'}{c} + bc - da \right) y + \left(\frac{c'}{c} + d + a \right) \dot{y}' - \left(\frac{c'}{c} + a \right) g_2 + cg_1.
\end{align*}
\]

and we get a similar result for \(y \):
\[
\begin{align*}
\ddot{x} &= \left(a' + \frac{b'}{b} + cb - ad \right) x + \left(\frac{b'}{b} + a + d \right) \dot{x}' - \left(\frac{b'}{b} + d \right) g_1 + bg_2, \\
\ddot{y} &= \left(d' + \frac{c'}{c} + bc - da \right) y + \left(\frac{c'}{c} + d + a \right) \dot{y}' - \left(\frac{c'}{c} + a \right) g_2 + cg_1.
\end{align*}
\]

In the case that \(a, b, c, d \) are all constants, \(a' = b' = c' = d' = 0 \) and so this simplifies to the equations
\[
\begin{align*}
\ddot{x} - \text{trace}(A) \dot{x} + \det(A) x &= g_1 - dg_1 + bg_2 \\
\ddot{y} - \text{trace}(A) \dot{y} + \det(A) y &= g_2 - ag_2 + cg_1.
\end{align*}
\]
Let A be a 2×2 matrix, and $z(t)$ a vector. Consider the differential equation
$$ z' = A \cdot z. $$
Suppose A has distinct eigenvalues λ_1 and λ_2 with some associated eigenvectors \mathbf{v} and \mathbf{w} respectively. Thus solutions to the above differential equation are of the form
$$ z(t) = C e^{\lambda_1 t} + D e^{\lambda_2 t}, $$
for some constants C and D.

Proof:

First of all, anything of that form $C e^{\lambda_1 t} + D e^{\lambda_2 t}$ will be a solution to the differential equation. This is because
$$ z(t) = C e^{\lambda_1 t} + D e^{\lambda_2 t} \rightarrow z'(t) = C \lambda_1 e^{\lambda_1 t} + D \lambda_2 e^{\lambda_2 t} = C A e^{\lambda_1 t} + D A e^{\lambda_2 t} = A \cdot (C e^{\lambda_1 t} + D e^{\lambda_2 t}) = A \cdot z(t). $$

So now we need to show that any solution to $z' = A z$ is of this form. Write out the matrix A and vector \mathbf{v} as
$$ A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} x \\ y \end{bmatrix}. $$

Thus we have
$$ x' = ax + by, \quad \text{and} \quad y' = cx + dy. $$

Now we consider two cases:

1. $b = c = 0$. In this case, the differential equations have no interaction: $x' = ax$ and $y' = dy$ so that the solution is
$$ z(t) = \begin{bmatrix} C e^{at} \\ D e^{dt} \end{bmatrix}, $$
for some constants C and D. Note that this agrees with the predicted form of the result. To see this, the eigenvalues of A are a and d. The eigen vectors are just $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ times any constant, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ times any constant. Hence the predicted solution is
$$ C \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} e^{at} + D \begin{bmatrix} 0 \\ c_2 \end{bmatrix} e^{dt} = \begin{bmatrix} C' e^{at} \\ D' e^{dt} \end{bmatrix} $$
for some constants C, C', D, D', c_1, and c_2. And this is precisely the form it must be in above.

2. $b \neq 0$ or $c \neq 0$. For definiteness, say $b \neq 0$, since it’s the same argument. This allows us to solve the first equation for y:
$$ y = \frac{1}{b} (x' - ax), $$
$$ \therefore y' = \frac{1}{b} x'' - \frac{a}{b} x'. $$
The second equation tells us that $y' = cx + dy$ so that equating the two yields
$$ cx + dy = \frac{1}{b} x'' - \frac{a}{b} x' \leftrightarrow cx + \frac{d}{b} (x' - ax) = \frac{1}{b} x'' - \frac{a}{b} x' $$
$$ \leftrightarrow cbx + dx' - adx = x'' - ax' $$
$$ \leftrightarrow x'' - \text{trace}(A)x' + \text{det}(A)x = 0. $$
This is a homogeneous, differential equation of a single variable. Solving this requires us to find r where
$$ r^2 - \text{trace}(A)r + \text{det}(A) = 0. $$
Note, however, that λ is an eigenvalue iff λ satisfies
\[
\det(A - \lambda \text{Id}) = 0 \iff \det\begin{bmatrix} a - \lambda & b \\ c & d - \lambda \end{bmatrix} = 0
\]
\[
\iff (a - \lambda)(d - \lambda) - bc = \lambda^2 - (a + d)\lambda + ad - bc = 0
\]
\[
\iff \lambda^2 - \text{trace}(A)\lambda + \det(A) = 0.
\]
Hence the r we find will be eigenvalues. Since we assumed there were two distinct eigenvalues λ_1 and λ_2, this gives
\[
x(t) = Ce^{\lambda_1 t} + De^{\lambda_2 t}
\]
\[
x'(t) = \lambda_1 Ce^{\lambda_1 t} + \lambda_2 De^{\lambda_2 t}
\]
\[
y(t) = \frac{1}{b}(x'(t) - ax(t))
\]
\[
= \frac{\lambda_1}{b}Ce^{\lambda_1 t} + \frac{\lambda_2}{b}De^{\lambda_2 t} - \frac{a}{b}Ce^{\lambda_1 t} - \frac{a}{b}De^{\lambda_2 t}
\]
\[
= \left(\frac{\lambda_1 - a}{b}\right)Ce^{\lambda_1 t} + \left(\frac{\lambda_2 - a}{b}\right)De^{\lambda_2 t}.
\]
\[
\implies z(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C \begin{bmatrix} 1 \\ (\lambda_1 - a)/b \end{bmatrix} e^{\lambda_1 t} + D \begin{bmatrix} 1 \\ (\lambda_2 - a)/b \end{bmatrix} e^{\lambda_2 t}.
\]
So it suffices to show that
\[
\begin{bmatrix} 1 \\ (\lambda_1 - a)/b \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} 1 \\ (\lambda_2 - a)/b \end{bmatrix}
\]
are eigenvectors with eigenvalues λ_1 and λ_2 respectively. To show that this is the case, we merely multiply these vectors by A on the left. Given that $\lambda^2 - (a + d)\lambda + (ad - bc) = 0$ for each λ, we get that
\[
\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 \\ (\lambda - a)/b \end{bmatrix} = \begin{bmatrix} a + (\lambda - a) \\ c + (d\lambda - da)/b \end{bmatrix} = \begin{bmatrix} \lambda \\ (d\lambda + cb - da)/b \end{bmatrix}
\]
\[
= \begin{bmatrix} \lambda \\ (\lambda^2 - a\lambda)/b \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ (\lambda - a)/b \end{bmatrix}
\]
Thus each vector is an eigenvector with the corresponding eigenvalue. This means that
\[
z(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = C \begin{bmatrix} 1 \\ (\lambda_1 - a)/b \end{bmatrix} e^{\lambda_1 t} + D \begin{bmatrix} 1 \\ (\lambda_2 - a)/b \end{bmatrix} e^{\lambda_2 t}
\]
\[
= Cve^{\lambda_1 t} + Dwe^{\lambda_2 t}
\]
where v and w are eigenvectors with eigenvalues λ_1 and λ_2 respectively.
Reference

Abel’s theorem, 30
Absolute value, 4
Augmented matrix, 44
Chain rule, 2, 18
Complex conjugate, 4, 45
Complex number, 3, 4, 9, 10
Conjugate, see Complex conjugate
Critical point, see Solution, constant
Determinant, 46
Difference equation, 23
Differential equation
 autonomous, 17
 exact, 18, 19
 homogeneous, 29, 32, 33
 homogeneous system, 53, 57
 linear, 12, 16, 29
 linear system, 53, 59
 n-th-order, 12, 29
 non-homogeneous, 33
 non-homogeneous system, 57
 ordinary, 12
 partial, 12, 19
 separable, 12, 13, 17
 system, 53, 57, 58
Direction field, 11
Eigenvalue, 48
Eigenvalues, 55
Eigenvector, 48, 56
Elementary row operation, 42–44
Euler’s formula, 4, 8, 10, 55
Euler’s method, 24
Euler’s method, improved, 25
Existence and uniqueness, 14
First-order, see Differential equation, n-th-order
 see also Difference equation
Gaussian elimination, 41, 43, 44
Global truncation error, 24
Imaginary numbers, 4
Imaginary part, 4
Improved Euler’s method, see Euler’s method, improved
Initial value, 12–14
Integrating factor
 for exact equations, 19
 for linear equations, 15
Integration by parts, 3, 6
Invertible, see Multiplicative inverse
Jacobian matrix, 59
Leading coefficient, 43
Linear combination, 29, 30
Linear dependence, 47, 48, 55
Linear independence, 47
Linearization, 59
Local truncation error, 24, 25
Magnitude, see Absolute value
Multiplicative inverse, 4, 41
Polynomial, 5
Product rule, 2, 3
Real part, 4
Recursion, 23
Reduced row echelon form, 42–44
Reduction of order, 31
Second-order, see Differential equation, n-th-order
Semistable, see Stability, semistable
Solution
 closed form, 23
 constant, 17, 18, 23
 equilibrium, see constant
 exact, see particular
 fundamental set, 30, 55
 general, 1, 12
 particular, 1, 16
Stability
 asymptotically stable, 59, 60
 semistable, 18
 stable, 18, 23, 60
 unstable, 18, 23, 60
The chain rule, see Chain rule
The product rule, see Product rule
transpose, 45
u-substitution, 3, 13
Undetermined coefficients
 for first-order equations, 16
 for second-order equations, 34
Unstable, see Stability, unstable
Variation of parameters, 34
Wronskian, 29