
MATH 495: Homework #2
Spring 2018

Due: Thursday, February 21, 2019

Solve the below questions related to basic cancer growth models. Most questions
will require theoretical analysis of growth models. There is also a problem of
data fitting, that will require the use of your preferred software.

1. If a cancer cell population is growing exponentially, by definition the num-
ber of cells (or equivalently, the tumor volume) satisfies the differential
equation

Ṅ = kN, (1)

for some constant k. Experimentally, we measure the growth rate by mea-
suring the time it takes for a population to grow.
Assuming N(t) satisfies (1), show that the doubling time τ of the popu-
lation is constant (i.e. independent of time), and find a relation between τ
and k.

2. Tumor cell sizes can vary, but for an estimate, assume in a particular
disease they are all solid spheres with diameter 20 µm. Furthermore
(again, this is overly simplistic), assume each cell divides regularly after
24 hours, i.e. that the growth is exponential. If this exponential growth
continues unabated, how long will it take for the tumor to reach the size
of a 60 m3 room? What does this tell you about the growth dynamics of
tumors (and cells in general)?

3. Consider the well-known model of Gompertzian growth, frequently utilized
in modeling cancer modeling. We saw in class that it takes the form of
exponential growth, where the growth constant G(t) is itself exponentially
decreasing:

Ṅ = G(t)N(t),

Ġ = −αG(t).

(a) Show that this can be written equivalently as a one-dimensional au-
tonomous equation of the form

Ṅ = a (1− b logN)N.



Relate the parameters a and b to the parameters in the original model:
α,N(0), and G(0).

(b) Find the carrying capacity of the equation found in part (a).

4. In Problem 3, you showed that the Gompertz growth rate takes the form

F (N) = a (1− b logN)N.

(a) What is the maximum growth rate for this tumor, and for what size
does it occur?

(b) Provide a sketch of F (N) vs. N . Be as precise as possible, for all
physical tumor sizes.

(c) Using (a) and (b), plot all qualitatively distinct solution trajectories
(N(t) vs t).

5. The “classical” von Bertalanffy model a division rate proportional to the
surface area, and a death rate proportional to the mass (and hence the
volume).

(a) Using these assumptions, provide justification for the corresponding
mathematical model describing the evolution of the number of cancer
cells N(t):

Ṅ = αN
2
3 − βN. (2)

(b) Although equation (2) can be solved analytically, it is easier if we as-
sume that tissue does not change shape as the tumor grows. That is,
if we can write

N(t) = γS(t)3,

for some constant γ, where S represents a length in one dimension.
Using (2) and the above definition for S(t), derive a linear first-order
equation for S(t). Feel free to relabel constants to make notation sim-
pler, but please keep track of all parameter definitions.

(c) Solve the obtained ODE in part (b), and find the limits limt→∞ S(t)
and limt→∞N(t).

6. In this problem, we investigate different growth models on a set of exper-
imental data. In the attached csv files (mass.csv, times.csv, samples.csv,



and stdevs.csv), growth kinetics of Fortner Plasmacytoma 1 tumors from
tumorigeneic mouse models are provided. The four data sets represent
temporal data (days) of mean tumor mass (mgs) over a number of different
mice (the number of mice at each data point is contained in samples.csv,
with corresponding standard deviation in stdevs.csv).

(a) Plot the data, including errors bars representing the sample standard
deviation:

σ̃ :=
σ√
n
.

The following (incomplete) code may be useful:

clear all; close all;

% Read in the data
times = csvread('times.csv');
mass = ;
stdevs = ;
samples = ;

% Standard error
error = ;

% Plot with error bars
figure(1)
errorbar(times, mass, error,'ok');
hold on;
xlabel('time (days)');
ylabel('tumor mass (mg)');

(b) Now, fit a Gompertz growth equation to the data set. That is, find
parameters a and b, with

dN

dt
= a (1− b logN)N,

which (locally) minimize the residual

E(a, b) =
N∑
i=1

(
N(ti; a, b)−Ni

σi

)2

,

where Ni represents the experimental data measured at t = ti, and
N(t; a, b) is the model (i.e. the solution of the ODE at time t with
parameters a and b). Note the σi in the denominator to weight terms



according to their overall variance (large σ contributes less to the min-
imization).

This can be accomplished relatively easily in MATLAB, in a number of
different ways. One way is to utilize the built-in function fminsearch.
You will probably need to construct three m-files :

(i) One with ODE right-hand side, i.e. vector field (say gompertz.m, a
function),

(ii) one which evaluates the error between the model and the data, given
by E(a, b) above (say errorGompertz.m, a function),

(iii) and a driver, which which call the minimization procedure fmin-
search.

For the driver (part (iii)), the following can be used to solve for the
parameters and plot the model:

%Now fit the data
%Include initial guess
a0 = 1;
b0 = 0.5;
params0 = [a0,b0];

% Call MATLAB minimization fminsearch
% min is the optimized parameters (vector [a,b])
% err is the difference in E between data and model at optimized parameters min
[min,err] = fminsearch(@(params)error gompertz(params,times,mass,error),params0,optimset('TolX',1e-6,'MaxIter',200));
a opt = min(1);
b opt = min(2);

% Solve Gompertz equation with computed parameters
[T opt,N opt] = ode23s(@gompertz,times,mass(1),[],a opt,b opt);
plot(T opt,N opt,'-b','LineWidth',2);

I am not including everything here, but most can be accomplished in a
short amount of code. (i) involves just writing the vector field, as in HW
#1, and (ii) requires you to solve the ODE on the time interval indicated in
times.csv, and then find the net error E(a, b) (it should return this). Plot
the experimental data together with the Gompertz fit obtained.
Indicate your values for a and b.

(c) Do the same, but for exponential growth. That is, repeat the analysis from
(b), except assuming here that N satisfies the ODE

dN

dt
= kN.



Note here you will want to find one parameter, k.

(d) What are the respective errors for each of the two models? Which does
better?

(e) What do they each predict for the tumor size at 30 days?


