
Chapter 3

Population Genetics for Large
Populations

The diversity of life is a fundamental empirical fact of nature. Not only is there an
astonishing variety of species; diversity also prevails within species. As in human
populations, individuals of a species vary considerably in their outward traits—size
and shape, external markings, fecundity, disease resistance, etc. This is called pheno-
typic variation, and since phenotypes are shaped by genes, it reflects an underlying
genotypic diversity. The achievements of modern genetics and molecular biology
described in Chapter 1 allow us to confirm and to study genotypic variability down
to the molecular level.

The science of genotypic variation in interbreeding populations is called popu-
lation genetics. Its goal is understanding how genetic variation changes under the
influence of selection, mutation, and the randomness inherent in mating, as one gen-
eration succeeds another. Mathematics is a fundamental tool. Population geneticists
combine what is known about heredity—how DNA carries genetic information, how
chromosomes function and give rise to Mendel’s laws, how mutations arise—with
hypotheses about mating and selective advantage to create mathematical models for
the evolution of genotype frequencies. By comparing the predictions of these models
to field data, they can then test theories and make inferences about genealogy and
evolution.

This chapter is an introduction to elementary population genetics models for
large populations and simple genotypes. Large population models are derived by
considering what happens in the limit as the population size tends to infinity. The
use of this limit is called the infinite population assumption. Of course, actual
populations are finite; the infinite population limit is meant to serve as an approx-
imation when the population is large. There is a good modeling reason for the
infinite population assumption. When it is imposed, genotype frequencies evolve
deterministically, even though mating choice and survival at the individual’s level
are random.
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2 CHAPTER 3. POPULATION GENETICS I

Population genetics is an excellent introduction to the art of probabilistic mod-
eling. Like any art it can only be learned by doing, and this chapter is written
to encourage active participation. The student is asked to carry out many steps
of the exposition and to construct extensions of models through guided exercises
embedded in the text. It is important to treat these exercises as an integral part of
reading the chapter.

In terms of mathematics, this chapter requires some elementary probability. The
reader should understand random sampling, independence, and the law of large
numbers, and be able to compute probabilities of simple sampling experiments.
Most of these topics are reviewed in Section 2.1. It will also be necessary to analyze
solutions to difference equations. A first order difference equation for a real-valued
sequence is an equation of the form

x(t+1) = φ(x(t)) , (3.1)

for t = 0, 1, 2, . . . , where φ is a given function whose domain and range are subsets of
the real numbers. Given an initial value x(0), one can compute a numerical solution
for as many values of t as one likes by recursion: x(1) = φ(x(0)), x(2) = φ(x(1)),
etc. A second order difference equation takes the form

x(t+1) = ψ
(
x(t), x(t−1)

)
, (3.2)

and it can be solved numerically by recursion starting from given initial values of
x(0) and x(1). However, for applications and most theoretical analysis, one really
would like to know what x(t) is as a function of t, or barring this, how x(t) behaves
as t increases to infinity. The nicest situation is when there is an explicit formula for
the solution. Explicit solutions are available to (3.1) when φ(x) = ax+b, and to (3.2)
when ψ(x, y) = ax+by+c. It is explained how to derive these in cases encountered in
this chapter in the chapter appendix. We shall also need to understand the behavior
of solutions to the first order equation when φ is nonlinear and techniques for doing
so are explained in Section 3.4.

3.1 Modeling principles for population genetics

Mendelian genetics, as summarized in Chapter 1, is the biological framework for this
chapter. In this section we address the additional biological issues and assumptions
needed to formulate models. Throughout, the study of one locus with two alleles
serves as a running example.

3.1.1 Some biological considerations

Sex. (And you never thought you’d see this word in a math text!) Species engaging
in sexual reproduction are either monecious or dioecious. Each individual of
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a monecious species houses both male and female sex organs, so individuals are
themselves neither male or female. (The root meaning of “monecious” is in one
house.) Plants with flowers that both contain an ovum and produce pollen are
examples of monecious species. In contrast, individuals of dioecious (in two houses)
species are either male or female. The distinction between monecious and dioecious
species is relevant to geneology, because any individual of a monecious species can
mate with any other individual. Potentially, a monecious individual can even mate
with itself, which is called self-fertilization or selfing. In reality, selfing is prevented
in many monecious species by various biological mechanisms, which presumably
have evolved to prevent excessive inbreeding.

Autosomal vs. sex chromosomes. Genetic mechanisms of sex determination in
dioecious species are diverse and complicate the analysis of inheritance. Sex is often
determined by a particular chromosome, the sex chromosome, which is present in one
sex, but not the other, or is present in different numbers. Chromosomes other than
sex chromosomes are called autosomal. In diploid species, autosomal chromosomes
come in homologous pairs in both male and female, so male and female genotypes
for loci on autosomal chromosome have the same form. However, sex chromosomes
may not be paired and there may be but one locus per individual for the genes they
carry, so male and female genotypes for loci on the sex chromosome will differ in
form. Genes or loci on sex chromosomes are said to be sex-linked.

We shall only study models for dioecious species following the human pattern
of sex determination. A human female has two paired X chromosomes, but a male
has only one X, which is paired instead with a Y chromosome. Genes on the X
chromosome do not have loci on the Y chromosome, and so the male will carry only
a single allele for these genes. A child is male only if he receives a Y from his father
and an X from his mother; thus, the X chromosome in a male is always inherited
from the mother.

3.1.2 Genotypes and Populations

The concepts of genotype and allele are covered in Chapter 1. Genotypes are always
defined with respect to some pre-specified set of loci. The associated genotype of an
individual is a list of all the alleles appearing at the specific loci in the chromosomes
of an autosomal cell. Single letters are often used to denote alleles, and hence
genotypes usually take the form of strings of letters. For example, the pea plants
of Mendel discussed in Chapter 1 admit two alleles for pea color: Y , for yellow,
and G, for green. The peas are diploid, and hence there are two loci for color on
the chromosomes of a typical cell. The possible genotypes with respect to the locus
for pea color are thus Y Y , Y G, and GG. There are also two alleles, W (wrinkled)
and S (smooth) for pea texture, and again two loci for texture in the chromosome.
Hence the possible genotypes with respect to the loci for color and texture are Y Y SS,
Y YWW , Y YWS, Y GSS, Y GWW , Y GWS, GGSS, GGWW , GGWS.
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A population is a collection of living organisms. But population geneticists are
interested only in genotypes, and so they suppress the extraneous flesh and blood
reality of individuals and treat a population merely as a collection of genotype letter
strings, one string per individual. For example, {Y Y, Y G,GG,GG, Y Y, Y G, Y G}
represents a population of 7 pea plants in a study of the genetics of pea color. Or,
for another example, if you were to participate in a study of the genetics of eye
color, you would enter the data set as letters coding your alleles for eye color. All
your other distinctive features —your good looks, superior intelligence, and athletic
prowess—would, sad to say, be ignored. Thinking of a population as a collection of
letter strings is very helpful to a clear understanding of the models.

3.1.3 Gene and Allele Frequencies

Consider a population and one of its possible genotypes, G1 · · ·Gk. The frequency
fG1···Gk

of G1 · · ·Gk is simply:

fG1···Gk

4
=

number of individuals with genotype G1 · · ·Gk

population size
. (3.3)

When time is a consideration, fG1···Gk
(t) will denote a genotype frequency at time

t.

Example 3.1.1. Consider the following population of a diploid species, in a study of
a single locus that admits two alleles A and a:

AA, AA, AA, Aa, Aa, Aa, Aa, aa, aa, aa, aa, aa (3.4)

There are 12 individuals represented in the population, three of which are AA and
five are aa. Thus fAA = 3/12 = 1/4, and faa = 5/12. �

Allele frequencies are instead computed by counting alleles only and ignoring
how they are organized into genotypes. Given a population and a locus `, the allele
pool for ` is the collection of all alleles from population genotypes that occur at
locus `. To visualize this, imagine collecting the letters for alleles at locus ` from all
the individuals of the population and pooling them together in a box, where they
are no longer identified by the individual they belong to. If A is a possible allele
that can occur at `, the frequency fA of A is defined to be its frequency relative to
the allele pool for `:

fA
4
=

number of A’s in the allele pool for `
size of the allele pool for `.

(3.5)

If ` is a locus on an autosomal chromosome of a diploid species, each individual
genotype contains exactly two alleles at `. Therefore, if there are N individuals in
the population, the size of the allele pool equals 2N , and this will be the denominator
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to use in computing fA. Again, when time is a consideration, fA(t) will denote
frequency at time t.

Example 3.1.1, continued and extended. In the single locus genotype of Example
3.2.1, the allele pool is the collection of the 24(= 2×12) letters listed in (3.4). There
are a total of 10 A’s: thus fA = 10/24 = 5/12.

Consider instead the population

AABb,AAbb,AAbb,AaBB,AaBB,Aabb,Aabb, aaBb, aaBB, aaBB, aabb, aabb,

where B and b denote alleles at a locus different than that of A and a. The calcu-
lation of fA is unchanged, because the allele pool for ` is unchanged, the numbers
of B and b alleles being irrelevant. In calculating fA, one should not divide by the
total number, 48, of letters appearing in the population, but by the total number
of letters labeling alleles at the same locus as A. The reader should confirm that
fb = 14/24. �

Exercise 3.1.1. Consider a locus ` on the X chromosome in humans. The gene
has three alleles A, a and ā. Consider a second locus on an autosomal chromosome
admitting alleles B and b. Find fA and fB for a population consisting of 5 males
and 7 females, where the males have genotypes ABB, ABB, aBb, āBb, and ābb, and
the females have genotypes AAbb, aaBb, aābb, āABB, āāBB, aABb, and aāBB. �

Genotype and allele frequencies cannot be arbitrary, but must obey simple alge-
braic constraints. We will illustrate this for a simple case; the student should then
be able to derive analogous relationships for other situations—see, for instance,
Exercises 3.2.4.

Genotype and allele frequencies for the one locus/two allele case in a diploid
population. Let the alleles be denoted A and a; the possible genotypes are then AA,
Aa, and aa. Since each allele is either A or a, it follows that

fA + fa = 1.

Likewise,
fAA + fAa + faa = 1. (3.6)

In addition allele and genotype frequencies are related as follows:

fA = fAA +
fAa

2
, fa = faa +

fAa

2
. (3.7)

We derive the first equation of (3.7), the second being similar. Let N denote
the size of the population. Since the population is diploid, the size of the allele
pool for the locus at which A occurs is 2N . Now count the number of A’s in the



6 CHAPTER 3. POPULATION GENETICS I

allele pool for ` in terms of the genotype frequencies. By definition of fAA, there
are NfAA genotypes AA in the population, and so they contribute a total of 2NfAA

letter A’s. Similarly, there are NfAa genotypes Aa contributing a total of NfAa

letter A’s. Individuals of genotype faa of course contribute no A’s. Hence, using
definition (3.5),

fA =
2NfAA +NfAa

2N
= fAA +

fAa

2
�

In general, genotype frequencies cannot be recovered from allele frequencies,
because they depend not just on numbers of alleles, but on how the alleles are
distributed among individuals.

3.1.4 Random Mating

In this chapter, ‘mating’ is used in a special, technical sense. It refers not to the
biological act, but its outcome; a ‘mating’ means the creation of one new individual
from two parents, male and female, by sexual reproduction. Each parent to a mating
carries a pool of gametes and the mating consists in uniting a gamete of one parent
with the gamete of the other.

The issue at the heart of how genotype frequencies evolve is:

• What is the probability that a mating produces an offspring with a given geno-
type?

This probability will of course depend on the assumptions made about how likely it
is individuals of each different genotypes mate with each other. Here we will describe
the random mating model and deduce its consequences for genotype probabilities.
The concept of random sampling, as defined and discussed in section 2.1, will play
a central role. Recall that a random sample is a draw in which each individual has
an equally likely chance to be chosen.

The idea of random mating is that each individual in the mating pool has the
same chance of reproductive success and mate choice is totally by random.

Definition. In a random mating, each parent is chosen by independent ran-
dom sampling from the population, and the gamete from each parent is chosen by
independent random sampling from its pool of gametes.

When the species is dioecious the two parents are randomly sampled from the
male and female sub-populations, respectively. When the species is monecious, male
and female are sampled from the same population with replacement. Thus, in the
monecious case, selfing is possible in a random mating.
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As defined here, random mating might seem far removed from the real world,
where selective mate choice and accidents of physical location are obviously impor-
tant. A discussion of when random mating is appropriate or useful as model appears
at the end of this section.

We will only work with diploid populations, and in the case of dioecious species,
we will always use the human model of sex determination. In these cases, random
mating leads to a simple principle for calculating offspring genotype probabilities.
Let S denote the population from which a parent is chosen. Let fSA be the frequency
of an allele A in population S. If a parent is chosen from S in a random mating,
first it is randomly selected from S and then a gamete is randomly selected from its
gamete pool. Let pSA be the probability that this gamete carries allele A; that is,

pSA = P
(
parent selected randomly from {S} passes A to an offspring

)
.

Lemma 1 Under the assumption of random mating,

pSA = fSA . (3.8)

Observe that fSA is precisely the probability of selecting A in a random sample
from the allele pool. Thus, Lemma 1 says, in words, that the probability a randomly
selected parent passes A to its offspring is just the probability of randomly drawing
A from the allele pool. This is key to understanding the models based on random
mating.

Lemma 1 is true very generally, but we shall demonstrate why only for the
specific case of two alleles at a locus. Let those alleles be denoted A and a.

Let fSAA and fSAa be the frequencies of AA and Aa in the population. We know

from the definition of random sampling that P
(
selected parent is AA

)
= fSAA, and

P
(
selected parent is Aa

)
= fSAa. Now, if an AA individual is the parent, it passes

A to the offspring with probability one. But if an Aa individual is chosen to mate,
half of its gametes contain A and the other half do not, so the probability it passes
A to an offspring is 1/2. Therefore, by conditioning on whether the parent is AA or
Aa and using (3.7),

pSA = P
(
U

∣∣selected parent is AA
)
P
(
selected parent is AA

)
+

1
2
· P

(
U

∣∣selected parent is Aa
)
P
(
selected parent is Aa

)
= 1 · fSAA +

1
2
· fSAa = fSA .

A similar argument works for a locus on the Y chromosome in sampling from a
population of male parents, because in this case the probability that a random male
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passes A to the offspring is just the probability that he has an A on Y , and this is
just the frequency of A in the male population. �

This lemma contains just about everything we need to know in developing models
based on random mating. We could almost take equation (3.8) as a definition of
random mating. But we have tried to lead up to it in a careful way, to show how it
is a consequence of the idea of completely random mate choice and of the nature of
sexual reproduction.

The next example shows how to compute genotype probabilities of the offspring
of a random mating in the simplest situation.

Example 3.1.2. Random mating in the one locus/two allele case in a monecious
population.

Consider a locus with two alleles A and a in a monecious species. Let a random
mating take place in a population with allele frequencies, fA and fa. The offspring
of this mating will be AA only if both parents contribute allele A. Since the species
is monecious, each parent is drawn by random selection from the entire population,
and so, by Lemma 1, fA is the probability it contributes A. Since the parents are
chosen independently in random mating, the probability that both contribute A is
f2

A. Thus,

P (offspring is AA) = f2
A = (fAA +

fAa

2
)2. (3.9)

Similarly,

P (offspring is aa) = f2
a = (faa +

fAa

2
)2. (3.10)

The event that a random mating produces an Aa is the union of the event that the
first parent contributes A and the second a, which has probability fAfa with the
event that the first parent contributes a and the second A, again having probability
fAfa. Hence,

P (offspring is Aa) = 2fAfa = 2fA(1− fA) = 2(fAA +
fAa

2
)(faa +

fAa

2
). (3.11)

(Show that the three probabilities of (3.9)—(3.11) add up to 1!) �

Remark. The definition of random mating stipulates that the parents are sampled
independently. If the species is monecious, both samples are from the same pool of
potential parents, and hence independent sampling can lead to the same individual
being chosen twice, which amounts to selfing. However, when the population has
size N , the probability of selfing is 1/N (see Exercise 3.1.4). For N of even moderate
size, the selfing probability is thus small, and then the independence assumption is
a good approximation even when selfing cannot occur.

Discussion.
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The following remarks are meant to help the reader think more deeply about ran-
dom mating as a model. They are not used in what follows, but they are interesting
to consider.

1. “Random mating,” as used here, has a technically precise sense. It refers not
to any situation in which randomness enters mating, but to complete randomness,
in the sense that all matings are equally likely.

2. Random mating is selectively neutral: there are no mating preferences, and
the genotype of an individual or a gamete has no effect on its chances of reproductive
success.

3. The definition of random mating seems removed from what happens in real
populations. Offspring are not really produced one to a mating. When individuals
mate they typically produce lots of offspring in one mating, many of whom do
not survive long. Wouldn’t one obtain a more useful definition with an approach
grounded in the physical realities of mating? Unfortunately, this would require
building probabilistic models for how many times an individual mates, the number
of offspring per mating, etcetera, leading to models which are complex and species
dependent. However, we can argue that these complications are not relevant and
that the definition is essentially correct as a model for selectively neutral mating,
by taking a conditional viewpoint from the perspective of the offspring. Think
of a whole offspring population produced from the same parent population, and
do the following experiment. Sample an offspring at random from the population
and record its parents. In a selectively neutral, well-mixed parent population, each
possible pair of parents should be equally likely. It is as if each child chooses its
parents by two, independent random samples. Although, strictly speaking, it is
nonsense to say a child chooses its parents, mathematically it is equivalent, and it
leads to the definition of random mating we have given, without fussing about all
kinds of other details of the mating process.

4. The definition of random mating applies to the production of one offspring.
How different random matings from the same population are related probabilisti-
cally is a different matter. The simplest models assume matings are independent;
for example, independence is implicit in the formulation of the infinite population
assumption in the next section.

5. Is the random mating model reasonable? Surely there is an element of
randomness in all mating, but, especially with mammals, fish and birds, individuals
usually exercise mating preferences. Accurate models would account for sexual
preference by assigning higher probabilities to some genotype pairings and lower
probabilities to others. Is a model with completely random mating ever useful?

There are in fact several good reasons for this model. First, it is a baseline
case, whose consequences can be fully analyzed. As such, it serves as a kind of
null hypothesis, and a point of departure for more complicated models. If we want
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to infer that random mating is not appropriate for a population, we need to know
now in the first place how a population with random mating behave. Section 3.3
below on Wright’s fixation index is a good example of the ideas of the random
mating model can be used to analyze populations where mixing by mating is only
partial. Secondly, there are many situations, for example, pollination of plants by
wind or by insects, in which the opportunity for sexual selection is limited. Then
the random mating model may indeed be a good approximation of reality. Finally,
random mating may well describe gene mixing at selected loci, even if individuals
themselves are not mating completely at random. For instance, consider blood type,
which is inherited genetically, and human mating. If you are looking for a mate,
surely you are exercising preferences about looks, personality, earning potential,
whether the person in question is a mathematician or biologist, etc. But probably
you are not saying to yourself, if you live outside of Transylvania,“I really go for
those A blood types.” Therefore, if blood types are distributed evenly across all the
traits that do affect mate selection, mating will involve no preference of genotypes
for blood type, and random mating is then reasonable.

3.1.5 The infinite population assumption.

Imagine a population, S, that is created by repeated random matings in a parent
population. Let pG1···Gk

denote the probability that a random mating of parents
produces a child with genotype G1 · · ·Gk. Let fG1···Gk

denote the frequency of this
genotype in the population, S, of offspring. The infinite population assumption (for
S) asserts that genotype probability and frequency are identical:

fG1···Gk
= pG1···Gk

. (3.12)

To understand why this is called the infinite population assumption, imagine
creating the offspring population by successive random matings and let f (N)

G1···Gk
be

the genotype frequency in the first N offspring produced. For any finite N , this
is a random variable. But if the outcomes of each separate random mating are
independent of one another, then limN→∞ f

(N)
G1···Gk

= pG1···Gk
with probability one

by the law of large numbers. Interpreting limN→∞ f
(N)
G1···Gk

as the frequency in an
infinite population gives identity (3.12). For real populations, strict independence
between different random matings may not hold. Still, it is reasonable to expect
that, as N grows, the dependence between matings is limited enough for the law
of large numbers to hold. In effect, the infinite population assumption asserts the
law of large numbers for repeated random matings, whatever the exact degree of
independence.

The infinite population assumption is justified when the population is so large
that pG1···Gn approximates the frequency fg1···Gn closely with high probability. For
mathematical modeling, the virtue of this approximation is that it identifies geno-
type frequencies, which in real populations are random, with probabilities, which
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are not. As a result genotype frequencies in infinite population models evolve de-
terministically, as we shall see below.

3.1.6 Interaction of Generations

How individuals enter and leave the mating pool over time is an important factor
in gene flow. The simplest model assumes non-overlapping generations. This
means that the individuals of generation t mate among themselves to produce gen-
eration t+1, and once this is done, mate no more; generation t+1 mates to produce
generation 2 and then mates no more, and so on. This is a good model for species
with annual reproduction cycles and seasonal mating.

The extreme opposite of non-overlapping generations is a model in which births
and deaths take place continually, and, as soon as an individual is born, it enters
the mating pool. In such a case, distinct generations are not even well defined.
Intermediate models postulate a generational structure, but allow mating pools of
different generations to mix in a limited way.

3.1.7 Exercises

Exercise 3.1.2. (One gene/two alleles) Allele frequencies fA and fa = 1− fA do not
determine the genotype frequencies fAA, fAa, and faa. Give two different sets of
genotype frequencies for which fA = 0.5.

Exercise 3.1.3. One locus/two allele case in a dioecious population. Consider a
locus on an autosomal chromosome in a population of a dioecious species. Let A
and a denote the alleles that appear at the locus. Both males and females have
two copies of each locus, and so both males and females can have each of the three
possible genotypes AA, Aa, and aa. Let fm

AA, fm
Aa, etc., denote frequencies in the

male subpopulation, and ff
AA, ff

Aa, etc., frequencies in the female subpopulation. A
random mating is formed by choosing the father by random selection from the male
subpopulation and a mother by random selection from the female subpopulation.

(i) Find two expressions for P(offspring is Aa), one in terms of allele frequen-
cies and the other in terms of genotype frequencies of both male and female
subpopulations.

(ii) Derive similar expressions for P(offspring is AA) and P(offspring is aa).

(iii) Let fA be the frequency of allele A in the entire population. In general, one
cannot express fA in terms of fm

AA, ff
AA, etc. However, find an expression for

fA in terms of these genotype frequencies and the ratio, ρ = Nm/Nf , of the
size of the male population to the size of the female population.

Exercise 3.1.4. Calculate the probability that selfing occurs in a random mating in
a monecious population of size N .
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Exercise 3.1.5. Probabilities in Mendel’s experiments For this problem it may be
helpful to refer to Chapter 1, Section 1. Consider the genotype for pea shape and
pea color in Mendel’s peas. For color, there are two alleles Y and G for yellow and
green and yellow is dominant. The two alleles for shape are W for wrinkled and S
for smooth and smooth is dominant.

(i) There are four possible phenotypes relative to these two traits: smooth, green
peas; smooth yellow peas; yellow, smooth peas; and yellow, wrinkled peas. List the
genotypes that give rise to each phenotype. You should have 9 genotypes in all.

(ii) Consider a plant with genotype Y GSW . The genotypes of the gametes of
this plant will have one allele for color and one for shape: they will be GS, GW ,
Y S, YW . Assuming that the genes for color and shape assort independently, show
that the gamete genotypes are equally probable.

(iii) A random cross of Y GSW with itself consists of of a random sample of size
2 from the gamete pool of Y GSW , one to choose the sperm and the other the egg.
The joining of their genotypes is the result of the cross. Determine the probability
of each possible different phenotype that can result from the cross.

Exercise 3.1.6. This problem uses Chebyshev’s inequality and the Central Limit ap-
proximation of the binomial distribution; see Chapter 2. Consider the one locus/two
allele case. Let the frequency of allele A in a parent population be fA = 2/3. As-
sume that the first generation contains N individuals produced by N independent
random matings. Define fAA as in Section 3.2.6. This problem shows how to get an
idea the probabilities of deviation of fAA(1) from its mean 4/9 for a population of
size 1000.

(i) If N = 1000, use Chebyshev’s inequality to find an upper bound on the
probability that fAA(1) differs from f2

A = 4/9 by more than 0.05.

(ii) If N = 1000, use the DeMoivre-Laplace Central Limit Theorem to estimate
the probability that fAA(1) differs from f2

A = 4/9 by more than 0.05. Note that this
approximation gives a better result than the Tchebysheff inequality, which in the
binomial case is not sharp.

3.2 Models with no selection

This section studies models for the evolution of genotype frequency when no selection
is acting, primarily for the case of one locus with two alleles in a diploid species.
We shall start with the simplest model and gradually complexify by modifying the
basic assumptions.
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3.2.1 Basic model

The basic model studies the case of one locus with two alleles under the following
assumptions:

random mating; (A.1)
nonoverlapping generations; (A.2)

infinite population; (A.3)
monecious species; (A.4)

no selection, mutation, or migration. (A.5)

Except for the last assumption, these have been explained in the previous section.
Mutation refers to a random change in an allele of a parental gamete, caused, for
instance, by a copying error in the course of meiosis or by radiation damage to the
sex cells. Migration adds genotypes from outside sources to a population. Selection
occurs when different genotypes have different effects on survival or reproductive
success. All these complications are excluded in the basic model.

Consider a locus with two alleles A and a. Assumptions (A.1)–(A.5) lead directly
to a mathematical model for the evolution of the associated genotype frequencies.
In this model, fAA(t), fAa(t), faa(t), fA(t), and fa(t) will denote the genotype and
allele frequencies of generation t, t ≥ 0. These are unambiguously defined, first,
because assumption (A.2) means that each generation is a coherent entity, and
second, because assumption (A.5) implies that the frequencies in each generation
remain constant from the time of birth to the time of reproduction.

The model itself will be a set of equations that show how the genotype frequencies
of generation t determine those of t+1, for every t. Consider, for example, fAA(t+1).
As explained in the previous section at equation (3.12), the infinite population
assumption says

fAA(t+1) = P (a random mating of generation t parents produces AA) .

But we saw in Example 3.1.2, equation (3.9), how to calculate this probability
when (A.2), random mating, is assumed: it is f2

A(t). Also from (3.7), we know
fA(t) = fAA(t) + (1/2)fAa(t). Thus,

fAA(t+1) = f2
A(t) =

(
fAA(t) +

fAa(t)
2

)2

. (3.13)

The same reasoning yields as well,

fAa(t+1) = 2fA(t)fa(t)=2
(
fAA(t)+

fAa(t)
2

) (
faa(t)+

fAa(t)
2

)
(3.14)

faa(t+1) = f2
a (t) =

(
faa(t) +

fAa(t)
2

)2

(3.15)
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This system of difference equations prescribes exactly how genotype frequencies
evolve under assumptions (A.1)-(A.5). What does it imply about the behavior over
time of the genotype frequencies? The ideal answer to this question would be a
solution expressing fAA(t), fAa(t) and faa(t) as explicit functions of t. Can (3.13)—
(3.15) in fact be solved? Its complicated and nonlinear structure look forbidding,
but magic happens if we ask instead how allele frequencies evolve.

Using first (3.7) and then (3.13), (3.14), and fA(t) + fa(t) = 1, we find,

fA(t+1) = fAA(t+1) +
fAa

2
(t+1)

= f2
A(t) + fA(t)fa(t) = fA(t)(fA(t) + fa(t))

= fA(t). (3.16)

That is, allele frequency does not change from generation to generation! Hence, for
all t ≥ 0,

fA(t) = fA(t− 1) = · · · = fA(0)

and

fAA(t) = f2
A(t−1) = f2

A(0);
fAa(t) = 2fA(t−1)fa(t−1) = 2fA(0) (1− fA(0)) (3.17)
faa(t) = f2

a (t−1) = (1− fA(0))2 .

This solution is so important that it is given a special name, in honor of the first
scientists to state it clearly.

Definition: Allele frequencies fAA, fAa, and faa, with fAA + fAa + faa = 1, are
said to be in Hardy-Weinberg equilibrium if there exists a p, 0 ≤ p ≤ 1, such that

fAA = p2, fAa = 2p(1− p), faa = (1− p)2.

Using this definition, we can summarize the results of our analysis so far as
follows.

Theorem 1 (Hardy-Weinberg Theorem) Assume (A.1)–(A.5). Then the allele
frequencies are constant, and, for all generations t ≥ 1, the genotype frequencies for
AA, Aa, and aa are in Hardy-Weinberg equilibrium with p = fA(0) = fAA(0) +
fAa(0)/2.

Although simple, this is an extremely important result. Biologically, it says that
in the absence of selection, random mating maintains genetic variation in
the infinite population model. And it specifies the genetic equilibrium quanti-
tatively. In a natural population, absence of Hardy-Weinberg equilibrium indicates
that one of the assumptions (A.1)–(A.5) does not hold. If the population is large
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and isolated and random mating seems likely, it is then reasonable to deduce that
selective pressure or mutation is acting to maintain disequilibrium.

Testing for Hardy-Weinberg equilibrium is simple, due to the following criterion,
which you are asked to derive in Exercise 3.2.2.

Genotype frequencies fAA, fAa and faa are in Hardy-Weinberg equi-
librium if and only if

f2
Aa = 4fAAfaa. (3.18)

Example 3.2.1. Assume (A.1)–(A.5), and let fAA(0) = 0.2, fAa(0) = 0.4, and
faa(0) = 0.4. Describe the evolution of genotype frequencies.

In generation 0, the population is not in Hardy-Weinberg equilibrium, because
(fAa/2)2(0) = (0.2)2 = .04 is not equal to fAA(0)faa(0) = (0.2)(0.4) = 0.08.
The frequency of allele A is fA(0) = fAA(0) + (fAa/2)(0) = 0.4. The Hardy-
Weinberg theorem says genotype frequencies arrive at Hardy-Weinberg equilib-
rium with p = 0.4 in one generation. Thus, for t ≥ 1, fAA(t) = (0.4)2 = 0.16,
2fAa(t) = 2(0.4)(0.6) = 0.48, and faa(t) = 0.36. �

The simplicity of Theorem 1 suggests it should have simpler derivation than
we have given, and indeed it does. The genotype of each individual is produced
by randomly sampling a parent from the population, randomly drawing one of its
alleles, and then repeating the process, independently, for the second parent. Thus
the allele pool of each successive generation is produced by repeated, independent
random samples (two per mating) from the allele pool of the parent population.
Lemma 1 says that the probability, pA(t) of drawing allele A in each sample from a
parent of generation t is simply fA(t). If the law of large numbers applies because
of the infinite population assumption, then the frequency of A in generation t+1
should just be fA(t+1) = pA(t) = fA(t), exactly as we derived above. In effect, the
random matings producing each generation completely and randomly redistribute
allele pools among the individuals of the next generation. This is why Hardy-
Weinberg equilibrium is achieved with the first generation.

Why didn’t we develop the Hardy-Weinberg theorem by this argument from
the outset? First, from the purely logical standpoint, we stated the infinite pop-
ulation assumption not for allele frequencies but for genotype frequencies, and so
it is necessary to prove fA(t+1) = pA(t) = fA(t) as a consequence. The deriva-
tion in (3.16) does this. Secondly, equations (3.13), (3.14), (3.15), which analyze
evolution of genotypes directly, correspond more closely to what is going on biolog-
ically in mating. The student will need to understand this approach to deal with
more complicated models, especially those with selection, in which genotype affects
reproductive success.
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3.2.2 Problems

Exercise 3.2.1. You are studying a hypothetical species of butterfly. It has one gene
that controls wing color with two alleles, B and Y . Genotype BB butterflies have
blue wings, genotype Y Y butterflies have yellow wings, and genotype BY butterflies
have green wings. You sample butterflies in a population of mixed colors and find
that the frequencies of blue, yellow and green butterflies are, respectively, 0.2, 0.3
and 0.5. Is the population exactly in Hardy-Weinberg equilibrium? If not, what
would the Hardy-Weinberg equilibrium be given the actual allele frequencies?

Exercise 3.2.2. a) Show that genotype frequencies fAA, fAa and faa are in Hardy-
Weinberg equilibrium if and only if f2

Aa = 4fAAfaa. (Remember, fAA + fAa + faa =
1.)

b) The possible values of K = fAA and M = faa are definied by the region
K ≥ 0, M ≥ 0, and K + M ≤ 1. Graph this region in the (K,M) plane. Derive
a relation that expresses M = faa as a function of K = fAA when they are in
Hardy-Weinberg equilibrium and graph this curve in your region.

Exercise 3.2.3. A large monecious population (sizeN) of AA homozygotes is brought
into contact with a population of aa homozygotes of size 2N . From that point
on the populations merge at once and random mating takes place. There is no
selection, mutation or migration. Assuming N is large enough that we may assume
the infinite population hypothesis is valid, describe the evolution of the gene and
allele frequencies in all future generations.

3.2.3 The basic model for multiple alleles of one gene

This section is in the nature of a long exercise. We continue to study the genotype
for just one locus, but this time assume it admits m alleles, labeled A1, . . . , Am,
where m ≥ 3. Therefore, the possible genotypes are the pairs AiAi, where i and
j range between 1 and m. For notational convenience, denote the frequency of
genotype AiAj in generation t by fij(t) instead of fAiAj (t). Similarly, let fi(t) be
shorthand for the allele frequency fAi(t).

The exercises that follow guide you toward a statement of the Hardy-Weinberg
theorem for multiple alleles. They can be solved by straightforward generalization of
the two allele analysis presented in the previous section. If it helps, assume m = 3.
This case contains all the ideas needed to understand what happens for general m.

Exercise 3.2.4. For the two allele case we know that fA = fAA +(fAa/2). Work out
the analogous formula for the multi-allele case. That is, for each i, express fi(t) in
terms of fij(t), 1 ≤ j ≤ m.

Exercise 3.2.5. Apply random mating to express fij(t+1) in terms of the allele
frequencies fA1(t), . . . , fAm(t) in the previous generation.
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Exercise 3.2.6. Generalize the Hardy-Weinberg theorem to the multi-allele case, as
follows. Use the results of Exercise 3.2.5 to show that allele frequencies are constant
and that the genotype frequencies reach equilibrium values in generation t = 1 and
thereafter remain fixed. Express those equilibrium genotype frequencies in terms of
the allele frequencies in the population at time t = 0, and define a generalization of
Hardy-Weinberg equilibrium.

Rederive the Hardy-Weinberg equilibrium by arguing directly that allele fre-
quencies are constant.

Exercise 3.2.7. (See Exercise 3.2.2a).) Show that a set of genotype frequencies fij ,
1 ≤ i ≤ j ≤ m, is in Hardy-Weinberg equilibrium, that is, will remain constant for
all future generations, if and only if for every i 6= j, f2

ij = 4fiifjj .

3.2.4 One gene/two alleles for dioecious populations

In this section we analyze how the basic model changes when the species is dioecious
rather than monecious, and sex is determined, as in humans, by sex chromosomes
X and Y . Recall that an individual with two paired X chromosomes is female, but
an individual with one X and one Y is male. This system applies to most mammals
and to some insects and plants.

All the remaining assumptions (A.1), (A.2), (A.3), and (A.5) are in force. We
also assume Mendel’s hypothesis that different chromosomes segregate indepen-
dently of one another in meiosis. This means that if, say, T1 and T2 are the two
copies of chromosome T , and S1 and S2 are the two copies of chromosome S in
an individual, each of the four combinations (T1, S1), (T1, S2), (T2, S1), (T2, S2) is
equally likely in a randomly drawn gamete from that individuals egg or sperm.

As we saw in the monecious case, the crucial step in deriving a model was
calculating the probability that an offspring of a random mating has a particular
genotype. A priori, these probabilities could differ for male and female offspring.
To allow for this possiblity, we shall, for instance, denote the probability that the
male child of a mating has genotype AA by pm

AA; the probability for a female child
is similarly denoted by pf

AA. Genotype and allele frequencies could also differ, and
these will be denoted by fm

A , ff
A, fm

AA, ff
AA, etc.

The genotype of a locus on an autosomal chromosome is the same for both males
and females, because both sexes contain two copies of an autosomal chromosome.
However, if a locus is on the X chromosome, the genotype of a female will have two
alleles for that locus, but the male only one. Thus, loci on autosomal chromosomes
must be analyzed separately from loci on the sex chromosome.

Consider autosomal chromosomes first. Assuming with Mendel that different
chromosome types segregate independently simplifies the genetics immediately, be-
cause it implies that autosomal chromosomes are inherited independently of the
sex. Hence, for genotypes of loci on autosomal chromosomes, sex and genotype are
passed to progeny independently. As a consequence, the probability that a male child
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is born with a particular genotype is equal to the probability that a female child is
born with the same genotype. In other words, if G1 . . . Gk denotes a genotype with
respect to loci on an autosomal chromosomes.

pm
G1...Gk

= pf
G1···Gk

(3.19)

Consider now a locus on an autosomal chromosome with an allele A. The infinite
population assumption, applied separately to male and female subpopulations, says
that for all t ≥ 0,

fm
AA(t+1) = pm

AA(t+1) and ff
AA(t+1) = pf

AA(t+1),

where pm
AA(t+1) and pf

AA(t+1) are the probabilities that a random mating of gen-
eration t parents produces AA males and females, respectively.. Thus, from (3.19),
we get fm

AA(t+1) = ff
AA(t+1) for all t ≥ 0. This reasoning applies to any genotype

of loci on autosomal chromosomes: even if they start out unequal in generation
0, male genotype and allele frequencies will equal female genotype and
allele frequencies in all later generations.

Referring back to Exercise 3.1.2, the reader can now do the following problem
to complete the analysis of a locus on an autosomal chromosome.

Exercise 3.2.8. Consider a single locus with two alleles A and a. Assume the
frequencies fm

AA(0), fm
Aa(0), fm

aa(0) and ff
AA(0), ff

Aa(0), ff
aa(0) are given and that

assumptions (A.1), (A.2), (A.3), (A.5), and (A.6) are in force.
a) Calculate the genotype and allele frequencies, of the first generation, in terms

of the generation 0 genotype frequencies. Then calculate the allele and genotype
frequencies of the second generation.

b) Show that the allele frequencies of the male and female populations are equal
and constant for all generations t ≥ 1. Show that the genotype frequencies are in
Hardy-Weinberg equilibrium with

p = (1/2)
(
fm

AA(0) + (fm
Aa/2)(0) + ff

AA(0) + (ff
Aa/2)(0)

)
in generations 2, 3, . . . . �

By this exercise, the only difference between monecious loci and dioecious, auto-
somal loci is that it takes two generations instead of one to achieve Hardy-Weinberg
equilibrium. The first random mating of the dioecious population equalizes the al-
lele frequencies of male and female subpopulations, but does not yet produce Hardy-
Weinberg equilibrium. Once the allele frequencies are equalized, Hardy-Weinberg
follows immediately for all subsequent generations, because, from the point of view
of frequencies, there is no longer any effective difference between males and females.

Next consider a locus ` carrying alleles A and a on the X chromosome. Now
sex and genotype are linked. A female offspring has two X chromosomes, one from
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the father and one from the mother, and hence receives one allele from each parent.
But a male will have only one copy of the gene, which, because it is on the X
chromosome, he receives from his mother. Thus, females have the usual genotypes
AA, Aa and aa, with frequencies, ff

AA(t), ff
Aa(t), and ff

aa(t), but males have only
the possible genotypes A and a, and their frequencies are the same as the allele
frequencies, fm

A (t) and fm
a (t).

Assume again that generations do not overlap, that there is no selection, migra-
tion or mutation, and that mating is random. The next exercise guides the reader
through the formulation and analysis of the model under these assumptions. It will
turn out that the frequencies do not attain Hardy-Weinberg equilibrium in a finite
number of steps, but do tend to Hardy-Weinberg equilibrium as time progresses.

Exercise 3.2.9. a) Show that the random mating and infinite population assumptions
imply fm

A (1) = ff
A(0), ff

AA(1) = fm
A (0)ff

A(0), ff
Aa(1) = fm

A (0)(1−ff
A(0))+ff

A(0)(1−
fm

A (0)), faa(1)f = (1− fm
A (0))(1− ff

A(0)). Deduce that ff
A(1) = (fm

A (0) + ff
A(0))/2.

b) The same argument as in a) shows that for any t,

fm
A (t+1) = ff

A(t), t ≥ 0;

ff
A(t+1) =

1
2
(fm

A (t) + ff
A(t)) t ≥ 0

=
1
2
(ff

A(t− 1) + ff
A(t)) t ≥ 1.

Isolating the first and last expressions of the second equation, show that

ff
A(t+1) =

1
2
(ff

A(t− 1) + ff
A(t)). (3.20)

Equation (3.20) is a second order, homogeneous linear difference equation.
c) The goal in this part is to solve (3.20) for given values of ff

A(0) and fm
A (0).

From part a), this is equivalent to solving (3.20) given

ff
A(0) and ff

A(1) = (fm
A (0) + ff

A(0))/2. (3.21)

Step 1: Plug x(t) = rt into x(t+1) = (x(t) + x(t−1))/2 and factor out rt−1 to
find two values r1 and r2 such that rt

1 and r2
t both solve (3.20). Then show that

c1r1
t + c2r2

t solves (3.20) for any constants c1 and c2. This turns out to be the
general solution.

Step 2: Write ff
A(t) = c1r1

t + c2r2
t for some constants c1 and c2 and then

by choose c1 and c2 to satisfy the initial conditions, ff
A(0) and ff

A(1) = (fm
A (0) +

ff
A(0))/2, of (3.21).

(For more about solving second order linear difference equations, see the Ap-
pendix to this chapter.)

d) Express the genotype frequencies ff
AA(t+1), ff

Aa(t+1), and ff
aa(t+1) at any

time t in terms of ff
A(t) and ff

A(t−1).
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e) Find the limits ff
A(∞)

4
= limt→∞ ff

A(t), ff
AA(∞)

4
= limt→∞ ff

AA(t), etc. in
terms of ff

A(0) and fm
A (0). Show that ff

AA(∞), ff
Aa(∞) and ff

aa(∞) are in Hardy-
Weinberg equilibrium.

3.2.5 Infinite population with mutation, but no selection

Consider again a single locus admitting two alleles A and a. In this section, we study
what happens when mutation is allowed. Otherwise, all the other assumptions made
in (A.1)—(A.5) are in force.

Mutations occur when alleles in a parental gamete become modified to new
forms. They can be induced by copying errors or exposure to chemical toxins or
radiation, and could produce a totally new allele, or an allele that already exists. In
either case, mutations occur randomly. We will consider only the simple situation
in which A and a can mutate one into the other according to the following rule:

Independently in each gamete, A mutates to a with probability u,
and a mutates to A with probability v, where 0 < uv.

(A.7)

Frankly, the motivation for this model is more pedagogical than scientific. We
want to explore, as an exercise, how the basic model might change as a result of
mutation, and (A.7) is the simplest mutation mechanism one can think of. It is
what is called in the trade a “toy model.” The assumption 0 < u + v in (A.7) just
assures that some mutation takes actually takes place.

In this problem it is simpler to work directly with allele frequencies, rather
than analyze genotype frequencies first. We have seen in the derivation of Hardy-
Weinberg equilibrium that

fA(t+1) = probability an offspring
acquires A from a randomly selected parent of generation t,

and that this fact is an expression of the infinite population assumption. This iden-
tity will be the starting point of our derivation. We need to compute the probability
on the right-hand side. According to (A.7), the offspring acquires A either if the
parent contributes a gamete with genotype A and A does not mutate, or if the par-
ent contributes a gamete with genotype a and a does mutate. The probability of
the first event is (1− u)fA(t), since fA(t) is the probability a parent contributes A
and (1−u) is the probability it does not mutate. Similarly, the probability a parent
transmits allele a, which then mutates to A, is v(1− fA(t)). Therefore,

fA(t+1) = (1− u)fA(t) + v(1− fA(t)) = v + (1− u− v)fA(t). (3.22)

This is a first order, linear difference equation. It is shown in the Appendix that its
solution is

fA(t) = (1− u− v)t[fA(0)− v

u+ v
] +

v

u+ v
. (3.23)
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Exercise 3.2.10. a) Check by direct calculation that the right-hand side of (3.23)
does indeed solve (3.22).

b) Assuming 0 < u + v < 2, prove limt→∞ fA(t) = v/(u + v). Derive from this
the following conclusion: if v > 0 and u > 0, alleles A and a both persist in the
population forever.

What happens if v = 0, but u > 0, or u = 0, but v > 0?
Finally, determine limt→∞ fAA(t) and limt→∞ fAa(t).

Exercise 3.2.11. Analyze the solution of (3.22) when u = 1 and v = 1 and interpret.

Exercise 3.2.12. Let fA(0) = 0.5, Let f (1)
A (t) denote the allele frequency in genera-

tion t when u = 1/4 and v = 1/2, and let f (2)
A (t) be the allele frequency in generation

t when u = 1/16 and v = 1/8.
(i) Show that the limiting frequency, as t→∞, is the same in both cases.
(ii) Denote the limiting frequency found in i) by p̄. Find the smallest value T1

such that |f (1)
A (T1)− p̄| ≤ 0.01. Find the smallest value T2 such that |f (2)

A (T2)− p̄| ≤
0.01. (Note that f (1)

A (t) and f
(1)
A (t) are both increasing in t.) Compare T1 and T2

and explain why your result is to be expected on intuitive grounds, considering the
mutation rates in both cases.

3.2.6 A model with overlapping generations

In non-overlapping generation models, each generation produces the next and then
mates no more. This would be the case if reproduction occurs during regularly
spaced mating season, and in each season, generation t produces the new genera-
tion t+1 and then dies. Suppose instead that in each mating season, the current
population produces enough offspring to replace a fraction h, 0 < h < 1, of itself by
random mating, and then a fraction h of the parents are eliminated (die) by random
selection. Then in each mating season, the population replaces a fraction h of itself.
The population at the next mating system consists of both older individuals and new
arrivals. Also assume that the new arrivals are sexually mature by the next mating
season and participate on equal footing in the next cycle of reproduction. This is
a simple system in which mixing occurs between the genes of individuals born at
different times, and the population size is constant. In this section we derive the
corresponding mathematical model when the other basic assumptions—(A.1), (A.3),
(A.4), and (A.5)—are in force.

For the derivation, it is convenient to measure time so that mating seasons occur
at intervals h, 2h, 3h, and so on. This is the proper time scale to compare models
with different values of h. In a time interval of length 1, approximately 1/h mating
seasons occur, in each of which a fraction h of the population is replaced. Thus, in
one unit of time, the number of new individuals entering the population is a fraction
h(1/h) = 1 of the size of the population, no matter what h is. Hence t = 1 is roughly
the lifetime of one generation.
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In what follows, fA(h), fA(2h), · · · shall denote the allele frequencies in the popu-
lation at the end of each successive mating season. Thus fA(h) is the allele frequency
after the first birth, death and replacement occurs, fA(2h) the frequency after sec-
ond occurrence, and so on. Similarly, fAA(kh) will represent the genotype frequency
at the end of the kth mating season.

Consider genotype AA and let t and t + h denote the times of two successive
mating seasons. The difference fAA(t+h)−fAA(t) will be a sum of the changes due
births of new individuals minus those due to deaths in the mating season t+h. Now,
the mating at time t+h occurs in a parent population in which the frequence of allele
A is, by definition, fA(t). The random mating and infinite population assumptions
thus imply that the frequency of AA among the offspring is f2

A(t). The frequency of
AA in the parent population at time t + h is by definition fAA(t), and since death
is by random selection, the frequency of AA among the individuals selected to die
must be fAA(t) as well. Since a fraction h of the population is being replaced, it
follows that

fAA(t+ h)− fAA(t) = h
[
f2

A(t)− fAA(t)
]

(3.24)

(If you are not convinced of this, imagine that the population has sizeN and compute
the number of AA genotypes entering and leaving the population in the mating
season t+ h.)

A similar analysis applies to fA(t+h). The allele frequency among the offspring
produced in the replacement event at t+h is fA(t), because we know this frequency
does not change in random mating. The proportion of individuals selected for
elimination with genotype AA is, as we know, fAA(t), and the proportion selected for
elimination with genotype Aa is, similarly, fAa(t). As a consequence, the frequency
of A among those eliminated is fAA(t) + fAa(t)/2 = fA(t), also. This means that
the number of A entering and leaving the population is the same in each mating
season and therefore fA(t) = fA(0) for all t > 0, just as in the basic model. Thus,
using this result in (3.24).

fAA(t+ h)− fAA(t)
h

= −fAA(t) + f2
A(0) , (3.25)

which is a first order, linear difference equation.
This equation can be used to derive a continuous time model by taking a limit

as h ↓ 0. When h is very small, the population is mating very frequently and
replacing only a small fraction of itself each time. The limit as h ↓ 0 models a
population in which mating and death occur continuously and at the same rate,
and in which offspring enter the mating pool immediately upon birth. This is the
extreme opposite of non-overlapping generations. By letting h ↓ 0 in (3.25),

f ′AA(t) = lim
h↓0

fAA(t+ h)− fAA(t)
h

= −fAA(t) + f2
A(0). (3.26)
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Exercise 3.2.13. a) Show that the solution to (3.26) is

fAA(t) = [fAA(0)− f2
A(0)]e−t + f2

A(0)

b) Use Proposition 1 in the appendix to show the solution to (3.25) is

fAA(kh) = (1−h)k
[
fAA(0)− f2

A(0)
]
+ f2

A(0). (3.27)

Since 0 < h < 1,

fAA(∞)
4
= lim

k→∞
fAA(kh) = f2

A(0). (3.28)

A similar analysis applied to the genotypes Aa and aa shows

fAa(∞)
4
= lim

k→∞
fAa(kh) = 2fA(0)fa(0), faa(∞)

4
= lim

k→∞
faa(kh) = f2

a (0). (3.29)

Exercise 3.2.14. Let fAA(0) = fAA. Solve equation (3.26) in terms of fAA, fA(0),
and t. (Hint: consider f̃AA(t) = fAA(t)− f2

A(0), and find a differential equation for
f̃AA(t).) Show that limt→∞ fAA(t) = f2

A(0), which is the Hardy Weinberg equilib-
rium value.

3.2.7 Summary

In retrospect, one should expect Hardy-Weinberg equilibrium to emerge whenever
random mating operates in the absence of selection and mutation, because random
mating mixes the allele pool. For the models studied above that with no mutation
this is true. When the population is monecious and generations do not overlap,
random mating is able to completely mix the gene pool in one mating season and
Hardy-Weinberg equilibrium is attained in the first generation. In the other situa-
tions, various conditions limit the mixing caused by random mating in each mating
season. Thus, if the population is dioecious, an extra generation is needed to mix
the male and female allele pools. If generations overlap, random mating can only
achieve partial mixing, with each successive mating. But the effects accumulate and
the populations in these cases do tend in the long-time limit to Hardy-Weinberg
equilibrium.

3.2.8 Exercises

Exercise 3.2.15. Develop a one locus/two allele model for overlapping generations,
as in Section 3.2, but with the following twist. Assume that mating seasons occur
at times h, 2h, . . . and in each season a fraction h of the population is replaced.
However, assume that newborns require two seasons to mature, and do not mate in
the first season after they are born, but only in the second. However, newborns have
the same probability as older individual to be removed, so they may not survive until
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sexual maturity. Let fA(t) denote the frequency of A in that part of the population
born before t−h, and let gA(t) be the frequency of A in that part of the population
born at t. Derive a set of difference equations for fA(t) and gA(t), reduce to one
equation for fA(t) and solve.

Exercise 3.2.16. Here is a model of one locus–two alleles in which mating is not fully
random. Assume otherwise an infinite population, non-overlapping generations, and
no selection.

Assume the population is composed of two subpopulations I and II, and let A
and a denote the alleles at the locus of study. Use pI(t) and p(t)II to denote
the frequency of allele A in each subpopulation for generation t. Now assume the
next generation is produced as follows. To replace an individual in population
I, determine its first allele by choosing an allele at random from population I.
Determine its second allele by drawing an allele at random from population I with
probability .8 and an allele at random from population II with probability .2 (Note:
.8 is the probability of choosing population I, not the probability of drawing a
specific allele!).

To replace an individual in population II, draw the first allele at random from
population II. Determine the second allele by drawing at random from population
I with probability .1 and from population II with probability .9.

a) Assuming no selection, derive equations that determine pI(t+ 1) and pII(t+ 1)
in terms of p(t)I and pII(t). Your equation should reduce to a set of two linear up-
date equations.

b) For this mating model .5(pI(t) + pII(t) is the frequency of allele A in the
entire population, assuming that populations I and II are equal. Show using the
result of a), that .5(pI(t) + pII

t ) is constant from one generation to the next.

c) limt→∞ pI(t) and limt→∞ pII(t) both exist. Guess on the basis of intuition
what these limits are.

By using part b), find a single update equation for pI(t) and solve it. Verify
your guess for limt→∞ pI(t).

Exercise 3.2.17. (Two locus model.) Let the alleles at locus `1 be A1 and A2.
Let the alleles at locus `2 be B1 and B2. Suppose that `1 and `2 are on different
chromosomes. By Mendel’s laws, these chromosomes segregate independently. What
is the evolution of the genotype frequencies fAiAjBkBm(t)? Describe the values of
these frequencies explicitly in terms of the allele frequencies of generation 0.

Exercise 3.2.18. The problem with the blending hypothesis. In so far as there was a
theory of heredity in the late 1800’s prior to the rediscovery of Mendel’s results, it
would have been a theory of blending. That is, any specific trait of an individual
would be a blend half-way between the traits of its parents. Ewens, in his text,
Mathematical Population Genetics (1979), says:

“It is easy enough to see that, with random mating, the variance in a population
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for any characteristic would, under a blending theory, decrease by a factor of one-half
in each generation.”

This problem is about understanding Ewen’s statement. We need a model.
Suppose we have a characteristic whose strength can be described by a continuum
of values, x, say height. Let the random variableX denote the height of an individual
drawn at random from the population. Let us interpret the “variance in a population
for the height characteristic” as simply the variance of X. Denote this variance as
σ2. Now what happens in random mating? We draw and individual from the
population at random and let X1 denote its height. We draw a second individual
from the population independently of the first and denote its height as X2. The
random variable X1 and X2 are independent and have variance σ2. We mate the
two individuals to produce an offspring with height (1/2)(X1 + X2); this is the
blending. Now finish the reasoning!

Comment: Notice that under blending the variance of any characteristic over
a population must disappear. (Why?) This is in total opposition to the Hardy-
Weinberg result, which shows that for inheritance of discrete traits, variation is
maintained. The blending theory is not consistent with real populations, which do
maintain variation.

3.3 Wright’s Fixation Index

This section may be skipped; it is not used subsequently.
Hardy-Weinberg equilibrium is an important tool of genetic analysis, and one of

its important applications is Wright’s fixation index. Real populations of a species
are often spread out over a large geographic area that does not offer uniformly good
habitat. As a result, distinct subpopulations develop, and, although there is defi-
nitely mating, and hence gene flow, between members of different subpopulations,
most mating takes place within subpopulations. Therefore the random mating as-
sumption does not apply to the larger population, and differences in gene frequencies
can develop between subpopulations, due, for example to inbreeding effects or to
different selective pressures on different subpopulations.

The American geneticist, Sewall Wright, whom we will meet again in the next
chapter, was interested in quantifying the effect of population structure on the fre-
quency of heterozygotes. We will explain his idea for the usual case of one locus
and two alleles, A and a.

The frequency fAa of heterozygotes in a population is called its heterozygosity,
and it is the same as the probability that a random selected individual is a het-
erozygote. If the population is in Hardy-Weinberg equilibrium, then we know its
heterozygosity is 2fA(1 − fA), and the relation of the actual heterozygosity to this
number measures how well the population is mixed.

Now consider a large population that is subdivided intoK populations S1, . . . ,SK .
For each index i, let ci denote the fraction of the total population in subpopulation
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i. Let fA,i be the frequency of allele A in Si. The frequency of A in the total
population is then the average

fA =
K∑

i=1

cifA,i.

To define Wright’s fixation index we will need two quantities, HT and HS . The
quantity HT (T is for total) is just what the heterozygosity of the total population
would be if it were in Hardy-Weinberg equilibrium. Thus HT = 2fA(1 − fA).
The quantity HS (S stands for subpopulation) is the average of the subpopulation
heterozygosities assuming each subpopulation is in Hardy-Weinberg equilibrium,
where each subpopulation is weighted by its proportion in the total:

HS =
K∑

i=1

ci2fA,i

(
1− fA,i

)
.

This is the same as the average heterozygosity in the total population assuming
each subpopulation is in Hardy-Weinberg equilibrium, because, if we were to select
an individual at random from the total population, the probability it would be in
subpopulation Si is ci, and given that it is in Si, the probability it would be heterozy-
gous is 2fA,i

(
1− fA,i

)
2fA,i

(
1− fA,i

)
. Wright’s fixation index of the subpopulations

relative to the total population is

FST :=
HT −HS

HT
.

As we shall see, HT ≥ HS ≥ 0. The numerator thus measures how much the
variation in heterozygosity among the subpopulations reduces the heterozygosity we
would expect if there were no subpopulation structure and random mating applied to
the total population. Wright’s index thus measures the relative size of this reduction;
it always takes a value between 0 and 1.

From the definition of FST and HT and a little bit of algebra,

HS = HT

(
1− FST

)
= 2fA(1− fA) ·

(
1− FST

)
.

Since 2fA(1 − fA) is the heterozygosity we would expect if the entire population
were in Hardy-Weinberg equilibrium, and HS is the actual heterozygosity (assum-
ing subpopulations are in Hardy-Weinberg equilibrium), we see that 1− FST is the
multiplicative factor by which the stratification by subpopulations reduces heterozy-
gosity.

There is another way to look at heterozygosity and Wright’s index which is also
informative. It is based on the following formula from probability. If X and Y are
two random variables, then

Var(X) = Var
(
E[X

∣∣Y ]
)

+ E
[
Var(X|Y )

]
(3.30)
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This is often used to simplify the computation of the variance of X when it has a
simple dependence on an auxiliary random variable Y . Note that both terms on the
right-hand side are positive. You can think of the first term as a measure of how
much of the variance of X is due to the fluctuation of its conditional mean with
respect to Y . Formula (3.30) is disussed and derived on pages 41–42 of Chapter 2.

To apply this formula to Wright’s index, imagine sampling the allele pool of
the total population at random. We shall be interested in what the sampled allele
is and where it came from. So let X = 1 if this allele is A and 0 if it is not.
Let Y = i if it comes from subpopulation i. Now consider the various terms in
(3.30). Clearly X is a Bernoulli random variable with P (X = 1) = fA. Hence,
Var(X) = fA(1−fA), which is precisely one-half of HT . On the other hand, suppose
we know that Y = i. Conditioned on this information, the allele we sample is equally
likely to be any member of the allele pool of subpopulation i, hence, conditioned
P (X= 1

∣∣Y = i) = fA,i. It then follows that Var(X|Y = i) = fA,i(1−fA,i), and hence,

E
[
Var(X|Y )

]
=

K∑
i=1

ciVar
(
(X

∣∣Y = i
)
) =

K∑
i=1

cifA,i

(
1− fA,i

)
= (1/2)HS .

This equation gives us a nice probabilistic interpretation of HS , and it implies that
(HT −HS)/2 = Var(X)− E

[
Var(X|Y )

]
= Var

(
E[X

∣∣Y ]
)
. As a consequence,

FST =
HT −HS

HT
=

(HT /2)−HS/2)
HT /2

=
Var

(
E[X

∣∣Y ]
)

fA(1− fA)
.

This formula makes it clear immediately that FST ≥ 0, since a variance is always
non-negative. Moreover, the numerator has a nice interpretation. It is the variance
of the random variable which takes value E[X

∣∣Y = i] if Y = i. But if Y = i, X is a
Bernoulli random variable with mean fA,i and so E[X

∣∣Y = i] = fA,i. Thus E[X
∣∣Y ]

is the random variable obtained by choosing a subpopulation at random according
to the probabilities c1, . . . , cK and recording its allele frequency, that is, it’s the
allele frequency of a randomly chosen subpopulation. Hence the numerator in the
last expression for FST is the variance of allele frequency over subpopulations.

This discussion has been theoretical. In reality, one knows neither the sub-
population allele frequency nor the over-all frequency, exactly. The data only give
empirical frequencies of samples, and there are interesting statistical questions on
how to estimate FST .

Wright’s fixation index and its variants is one of the most widely used tools
to study the structure of populations. This is partly because one can translate
models about how the subpopulations may have diverged or how long they have
been diverging into expected values for FST . Observed values can then be used to
draw inferences about genealogical history. A nice review of the index and references
to some of its main applications may be found in
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Holdinger, K.E. and Weir, B.S., Genetics in geographically structured populations:
defining, estimating and interpreting FST , Nature Reviews, Genetics, 10 (2009),
639-650.

3.4 An Infinite Population Model with Selection

So far, all our models have been selectively neutral, in the sense that genotype
does not influence reproductive fitness. In this section, we will describe a standard
method to introduce selection. It again leads to a difference equation model, but this
time one that is nonlinear. Its analysis requires new techniques, which we discuss
first in the next section.

3.4.1 Nonlinear, first-order difference equations

In general, it is not possible to find closed form solutions to the difference equation,

x(t+ 1) = φ(x(t)), (3.31)

when φ is a nonlinear function. However there is an exceptional case. A point x̄ is a
called a fixed point of (3.31), or of φ, if φ(x̄) = x̄. The solution of (3.31) that starts
off with x(0) = x̄, is just the constant sequence, x(t) = x̄, for all t ≥ 0; indeed, if
x(0) = x̄, then x(1) = φ(x(0)) = φ(x̄) = x̄, and thus, x(2) = φ(x(1)) = φ(x̄) = x̄,
and so on. This constant solution is called an equilibrium solution or steady state
of the difference equation (3.31).

Equilibrium solutions turn out to be important in the analysis of solutions start-
ing at other initial values. For example, given a solution {x(t)} to (3.31), it is often
more interesting to know whether limt→∞ x(t) exists or not, and what the value of
this limit is, than to know x(t) as a function of t. When φ is continuous, this limit
must be a fixed point of φ, by the following argument. If y = limt→∞ x(t), then
because φ is continuous, limt→∞ φ(x(t)) = φ

(
limt→∞ x(t)

)
= φ(y). But, if x(t)

solves x(t+1) = φ(x(t)), then

y = lim
t→∞

x(t+ 1) = lim
t→∞

φ(x(t)) = φ
(

lim
t→∞

x(t)
)

= φ(y)

showing y is a fixed point of φ. Thus, to narrow down the possible limits of solutions
to (3.31), it is only necessary to identify the fixed points of φ, which is a relatively
simple task.

Just knowing the fixed points does not tell us which other solutions have a limit,
and which fixed point that limit is. Fortunately, there is a simple graphical technique
called cobwebbing for visualizing solutions to help answer these questions. By itself,
cobwebbing is not a rigorous mathematical method. But it helps in guessing correct
answers, and in interpreting rigorous, analytic techniques. In particular, cobwebbing
makes clear heuristically how solutions behave near fixed points.
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Cobwebbing is carried out in the Cartesian plane. Start by graphing the diagonal
line y = x and, superimposed on that, the graph, y = φ(x). The fixed points of φ
are then easy to read off, since they are just the x-coordinates of the points in the
plane at which the graphs of y = φ(x) and y = x intersect. The unique fixed point
in Figure 1 is labeled x̄.
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x(1) x(2)x(3) x̄

Figure 1.

The object of cobwebbing is to plot successive values of the solution to (3.31),
starting at any given initial condition, x(0) = x0, on the x-axis. The fundamen-
tal operation is a stepping procedure that, starting from any point (x, x) on the
diagonal, leads to the point (φ(x), φ(x)). Figure 1 shows how the method works.
Plot the initial point x(0) = x0 on the x-axis. First draw a vertical line segment
from the point (x0, x0) to the curve y = φ(x), and then draw a horizontal line
from the curve back to y = x. The result looks like a step. Since the vertical line
intersects the graph of y = φ(x) at the ordinate y = φ(x0), the horizontal line is
drawn at the level y = φ(x0) and will intersect the line y = x at (φ(x0), φ(x0)).
So the first graphical step leads from (x0, x0) to (φ(x0), φ(x0)) = (x(1), x(1)).
Iteration of the stepping procedure starting from (x(1), x(1)) then produces the
point (φ(x(1), φ(x(1)) = (x(2), x(2)); a third repetition leads to (x(3), x(3)), and so
on. Thus, the x-coordinates of the successive points on y = x hit by the stepping
procedure plot out the solution to equation (3.31). Figure 1 carries out the first few
iterations.
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Cobwebbing helps determine how solutions to a difference equation behave, start-
ing from different initial values x0. For example, it is clear from Figure 1, that the
successive values of the plotted solution x(t) will increase and will converge to the
fixed point x̄, as t→∞. It is also clear that the same limiting behavior will obtain
for any initial values x0 close to but less than x̄. If x0 is close to x̄ but larger than x̄,
cobwebbing will show that the solution decreases toward x̄; you should check this.
This graphical analysis suggests, but does not prove, that limt→∞ x(t) = x̄ for all
starting values x0 sufficiently close to x̄. In the terminology of dynamical systems, x̄
is an example of a stable fixed point. A definition of this important concept follows.

Definition 1 Let x∗ be the fixed point of a difference equation. The set of all points
x such that limt→∞ x(t) = x∗, when (x(t))t≥0 is the solution of x(t+1) = φ(x(t))
starting at x(0) = x, is called the basin of attraction of x∗. The fixed point x∗ is
called stable if its basin of attraction includes an open interval about x∗.

Figure 2 illustrates a quite different situation. The cobwebbing is not shown,
and you should supply it yourself. You will see that when the initial point, x(0) is
close to the fixed point, x∗, the successive points x(1), x(2), . . . of the solution will
spiral away from x∗. The picture this time really will look like a cobweb, and x∗ is
not stable.

Although the cobwebbing analyses used in Figures 1 and 2 do not provide a
mathematical proof of stability or non-stability, the insights they provide can be
turned into a theorem. The key point is to identify a feature of φ that discriminates
between the two cases.

Theorem 2 Let φ be continuously differentiable and let z be a fixed point of the
difference equation x(t+1) = φ(x(t)). φ. If

If
∣∣ φ′(z) ∣∣< 1, then z is a stable fixed point.
If

∣∣ φ′(z) ∣∣> 1, then z is not stable.

If |φ′(x∗)| = 1, the fixed point x∗ can be either stable or not stable.

Figures 1 and 2 provide clear illustrations of this theorem. The tangent line to
φ at x̄ in Figure 1 has a positive slope less than that of the line y = x, which has
slope 1. Hence Theorem 2 confirms that x̄ is stable. While it is less immediately
clear, a sketch of the tangent to η at x∗ in Figure 2 shows that its slope is strictly
less than −1, and hence that this fixed point is not stable.
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x∗

We omit the proof of Theorem 2, but to see why it works we suggest drawing
for yourself a number of examples, some satisfying |φ′(z)| > 1, others satisfying
|φ′(z)| < 1, and graphing solutions by cobwebbing.

Here is another plausibility argument, which is actually the basis of a rigorous
proof. Assume that φ is differentiable at a fixed point x∗. The tangent line to the
graph of φ at x∗ is given by the equation y = φ(x∗)+φ′(x∗)(x−x∗) = x∗+φ′(x∗)(x−
x∗), and, for values of x close to x∗, approximates the graph of y = φ(x) to first
order. Therefore, if {x(t)}t≥0 satisfies the difference equation, x(t+1) = φ(x(t)) and
x(t) is close to x∗,

x(t+1) ≈ x∗ + φ′(x∗)(x(t)− x∗).

That is, near x∗, {x(t)}t≥0 is approximately a solution to the linear difference equa-
tion

z(t+1) = x∗ + φ′(x∗)(z(t)− x∗).

It is shown in the appendix to this chapter that the solution {z(t)} will converge
to x∗ if |φ′(x∗)| < 1, but that |z(t)| will go off to infinity if |φ′(x∗)| > 1. It can be
proved that the stability properties of the approximate linear equation transfer to
those of the original nonlinear equation, at least for starting values close to x∗.
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3.4.2 Exercises

Exercise 3.4.1. Show that
√

2 is a stable fixed point of

x(t+1) =
x(t)
2

+
1
x(t)

.

(This difference equation is actually Newton’s method for finding roots of x2 − 2.
Note in this example how close already x(2) is to

√
2 when x(0) = 1. )

Exercise 3.4.2. Graph φ(x) = (x3 − 4x)/8 carefully. Explore the solutions starting
from x(0) = 1, x(0) = 2/

√
3 and x(0) = 3. From cobwebbing, guess the basin of

attraction of the fixed point x∗ = 0. Show that your guess is correct by a rigorous
argument. (For this problem use a graphing calculator or a mathematical package
such as MAPLE or MATHEMATICA.)

Exercise 3.4.3. Consider the difference equation

x(t+1) = f(x(t)),

where f(x) = 4x(1− x). Graph this function on the unit interval [0, 1] and notice
that f maps the unit interval into itself. A solution of period 2 to the difference
equation is a sequence of the form (z, w, z, w, . . . ); that is, w = f(z) and z = f(w),
so the solution alternates between these two values. Argue by cobwebbing that it is
plausible x(t+1) = 4x(t)(1− x(t)) has a solution of period 2. Then find a solution
of period 2 analytically; determine exact values of z and w.

A period 2 solution is stable if for all x(0) close to z, the solution converges to
the period 2 solution, in the sense that lims→∞ x(2s+1) = z and lims→∞ x(2s) = w.
Show that the periodic solution you found is not stable.

3.4.3 A Model with Selection

For our model with selection, we keep assumptions (A.1)—(A.4); the population
is monecious, generations do not overlap, and mating is random. We assume also
there is no migration or mutation. For added clarity, let us assume that mating
occurs seasonally. Thus, generation t produces generation t+1 all at one time and
then generation t+1 matures over an interval of time until the next mating season.

Here, selection will mean that an individual’s genotype affects the probability it
survives to reproductive maturity. The survival probabilities, which are also called
selection coefficients, will be denoted by wAA, wAa and waa. Thus, for example,
wAA denotes the probability that an individual of genotype AA survives from birth
to reproductive maturity. We assume the selection coefficients are the same from
generation to generation and individuals survive or don’t survive independently from
one another. If, for example, wAA = 1/3 and the population is large, roughly only
1/3 of those individuals born as AA in any generation will survive to reproduce.
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It is necessary to be careful in defining the genotype and allele frequencies in
a generation t, because selection causes them to change over the lifetime of the
generation. We will be interested in the frequencies only at the beginning of each
generation, when it is produced by random mating, and at the time of reproductive
maturity, after selection has taken place and when mating takes place to produce
the next generation. We will use fA(t), fAA(t), etc., to denote the frequencies in
generation t at the time of its birth, and on the other hand, pA(t), pAA(t), etc., to
denote them for generation t at the time of reproduction. Because the population
is infinite and individuals survive independently of one another, the law of large
numbers implies pAA(t) equals the conditional probability that an individual has
genotype AA given that it has survived, and similarly for pAa(t) and paa(t).

The derivation of the model proceeds in two steps. The first relates frequencies
between generations, the second within generations. The first step is easy given
what we know. The probability that a randomly chosen parent of generation t
passes allele A to an offspring is pA(t) = pAA(t) + pAa(t)/2. Hence by random
mating and the infinite population assumption,

fA(t+1) = pA(t), (3.32)
fAA(t+1) = p2

A(t) = f2
A(t+1), (3.33)

fAa(t+1) = 2pA(t)(1− pA(t)) = 2fA(t+1)(1− fA(t+1)), (3.34)
faa(t+1) = 1− pA(t))2 = (1− fA(t+1))2, (3.35)

for all t ≥ 0. As a result fAA(t), fAa(t) and faa(t) are in Hardy-Weinberg equilib-
rium, for any t ≥ 1.

The second step expresses the probabilities, (pAA(t), pAa(t), paa(t)), in terms of
(fAA(t), fAa(t), faa(t)) and the selection coefficients. Remember that pAA(t) is the
conditional probability an individual has genotype AA given it has survived: in
mathematical notation

pAA(t) =
P (UAA ∩ S)

P (S)
=
P (S|UAA)P (UAA)

P (S)

where S is the event a randomly chosen individual born in generation t survives
and UAA is the event a randomly chosen individual is AA. By definition, P (UAA) =
fAA(t) and P (S|UAA) = wAA, and so the numerator of pAA(t) is wAAfAA(t). As for
the numerator, let UAa and Uaa denote the event an individual born in generation t
is Aa and, respectively aa. By the law of total probabilities (see Chapter 2, Section
2.1.4),

P (S) = P (S|UAA)P (UAA) + P (S|UAa)P (UAa) + P (S|Uaa)P (Uaa)
= wAAfAA(t) + wAafAa(t) + waafaa(t).
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Thus,

pAA(t) =
wAAfAA(t)

wAAfAA(t) + wAafAa(t) + waafaa(t)
, and (3.36)

pAa(t) =
wAafAa(t)

wAAfAA(t) + wAafAa(t) + waafaa(t)
. (3.37)

There is a similar equation for paa(t).
But equations (3.32)—(3.35) applied with t−1 replacing t, imply fAA(t) = f2

A(t)
and fAa(t) = 2fA(t)(1− fA(t)), as long as t ≥ 1. Hence

pAA(t) =
wAAf

2
A(t)

wAAf2
A(t) + wAa2fA(t)(1− fA(t)) + waa(1− fA(t))2

, (3.38)

pAa(t) =
wAa2fA(t)(1− fA(t))

wAAf2
A(t) + wAa2fA(t)(1− fA(t)) + waa(1− fA(t))2

. (3.39)

The final step of the derivation is simply to combine the results obtained in
equations (3.32), (3.38), and (3.39). From (3.32), fA(t+1) = pA(t) = pAA(t) +
pAa(t)/2. Hence, adding (3.38) and one-half of (3.39), we find that for t ≥ 1.

fA(t+1) =
wAAf

2
A(t) + waAfA(t)(1− fA(t))

wAAf2
A(t) + wAa2fA(t)(1− fA(t)) + waa(1− fA(t))2

. (3.40)

This equation will also be valid for t = 0, if we assume generation 0 at inception
is also in Hardy-Weinberg equilibrium, because (3.38) and (3.39) are then valid for
t = 0 also. From now on, let us impose this assumption. It simplifies the model and
does not affect the analysis of the limiting behavior of fA(t).

Equation (3.40), for all t ≥ 0, is the the final model. It looks a little scary, so,
to beautify it, define the so-called fitness function,

W (p) = p2wAA + 2p(1− p)wAa + (1− p)2waa, 0 ≤ p ≤ 1.

Then the numerator in (3.40) is W (fA(t)), and we can write the model as

fA(t+1) =
wAAf

2
A(t) + waAfA(t)(1− fA(t))

W (fA(t))
, t ≥ 0. (3.41)

This is a cosmetic change only, but turns out to be helpful.

Remarks.

1. Assume wAa 6= 0. By factoring it out of numerator and denominator in (3.40)

fA(t+1) =
(wAA/wAa)f2

A(t) + fA(t)(1− fA(t))
(wAA/wAa)f2

A(t) + 2fA(t)(1− fA(t)) + (waa/wAa)(1− fA(t))2
. (3.42)
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Thus, the selection model really depends only the two ratios wAA/wAa and waa/wAa),
which can take on any non-negative values. Similarly, when wAa = 0—which implies
that the genotype Aa is lethal—the model depends only on wAA/wAa.

2. So far we assumed selection occurs only because different genotypes have
different survival rates. But other genetic factors also contribute to selection; for
instance, genotypes might affect reproductive success even of individuals surviving
to reproductive maturity. Fortunately, it is possible to reinterpret the selection co-
efficients to cover all these possibilities with the same model. The only assumption
needed is that the parents of a randomly chosen offspring of generation t are chosen
independently. Instead of interpreting pAA(t), pAa(t), and paa(t) as frequencies at
the time of reproduction, we just think of them as the probability that a randomly
selected parent is AA, Aa, or aa, respectively. Then we impose as an assumption
that pAA(t), pAa(t), and paa(t) are related to fAA(t), fAa(t), and faa(t) as in equa-
tions (3.38) and (3.39), where wAA, wAa, and waa are non-negative coefficients. In
this broader view, it is not necessary to interpret these selection coefficients as sur-
vival probabilities; they are just nonnegative weights which quantify how the ratios
of genotype probabilities in mating differ from the genotype frequencies of the in-
fant population. As we saw above, the final model, (3.41), depends only on the
ratios wAA/wAa and waa/wAa, at least when wAa 6= 0. It is common in the litera-
ture to parameterize these ratios using two numbers r and s, by taking wAa = 1,
wAA = 1−r and waa = 1−s.

3.4.4 Analysis of the selection model

In this section, we use cobwebbing to analyze the selection model (3.41). We assume
the selection coefficients wAA, wAa and waa are all strictly positive, so that W (p) > 0
for all p in [0, 1]. For notational convenience, f(t) will be used to denote fA(t), and
φ(p) will denote the function

φ(p) =
p2wAA + p(1− p)wAa

W (p)
.

Then, the difference equation (3.41) takes the form:

f(t+1) = φ(f(t)). (3.43)

For any, strictly positive choice of the fitness coefficients, φ has fixed points at
0 and 1: this is easy to check by direct calculation. These fixed points make sense.
For example, p = 0 corresponds to the complete absence of allele A, and if it is
absent in one generation it cannot appear in future generations because there is no
mutation. Likewise, p = 1 corresponds to the complete absence of allele a.

The graph of y = φ(p) will have one of four possible general shapes, each cor-
responding to a different range of values of the selection coefficients. These shapes
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are illustrated in Figures 3—7. The graphs are plotted over the interval 0 ≤ p ≤ 1,
which is the only region of interest—being a frequency, fA(t) must remain in the
interval [0, 1] for all t. We shall explain each graph, and its consequence for the
behavior of solutions to (3.43), on a case by case basis. The explanations require
the following facts about φ. We omit the proofs, which require only routine, if
somewhat messy, calculations.

First, φ has a third fixed point, found by looking for a solution p 6= 1 to W (p) =
pwAA + (1− p)wAa, whenever 2wAa − wAA − waa 6= 0. It is

p̄ =
wAa − waa

2wAa − wAA − waa
. (3.44)

This fixed point will satisfy 0 < p̄ < 1 if either wAa > wAA and wAa > waa, or
wAa < wAA and wAa < waa, and in no other cases.

Second, the derivative of φ is

φ′(p) =
p2wAAwAa + 2p(1− p)wAAwaa + (1− p)2wAawaa

W 2(p)
. (3.45)

This is always positive in the interval 0 ≤ p ≤ 1, and hence φ is always strictly
increasing in this interval.
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Case I. Allele a is favored by selection: wAA < wAa < waa.
In this case, the graph of φ will have the shape shown in Figure 3. Cobwebbing

will show that if 0 ≤ f(0) < 1, then

lim
t→∞

f(t) = 0. (3.46)

This makes sense. It says that allele A will disappear from the population if allele
a has a selective advantage.

To see why Figure 3 is the correct graph, first use the fact, stated above, that
when wAA < wAa < waa, the fixed point p̄ does not lie in [0, 1]. Hence the only
fixed points of φ in 0 ≤ p ≤ 1 are p = 0 and p = 1, and the graph of φ must
lie either entirely above or entirely below the diagonal on the interval 0 < p < 1.
However, the slope of the tangent line to y = φ(p) at p = 0 is, by equation (3.45),
φ′(0) = wAa/waa. Since 0 < wAa < waa, φ′(0) < 1, which implies the graph of φ
must lie below the diagonal. Thus φ(p) < p for all 0 < p < 1.

Now pick a point f(0) between 0 and 1, but strictly less than 1 and start cob-
webbing. In every iteration, f(t+1) = φ(f(t)) < f(t). Therefore successive values
of f(t) decrease and can only tend to 0. This proves (3.46).

Case II. Allele A is favored by selection: waa < wAa < wAA.
In this case, if 0 < f(0) ≤ 1,

lim
t→∞

f(t) = 1.

This is really Case I with the roles of A and a reversed. The graph of φ is shown
in Figure 4. This time it lies strictly above the line y = p, and you can convince
yourself by cobwebbing that all solutions, except the solution which starts and stays
at p = 0, converge to 1.

Case III. Heterozygote dominance. waA > wAA and waA > waa.
In this case, if 0 < f(0) < 1,

lim
t→∞

f(t) = p̄,

where p̄ is the frequency defined above in (3.44).
The graph of φ for this case is shown in Figure 5. From the remark after

equation (3.44), we know the fixed point p̄ is strictly inside the interval [0, 1]. Since
φ′(0) = waA/waa > 1, the graph of φ will be above the graph of y = p for 0 < p < p̄.
It will pass through y = p at p = p̄ and be below y = p for p̄ < p < 1. The graph of
y = φ(p) is always increasing. Thus, at p̄, 0 < φ′(p̄) < 1, and p̄ is a stable fixed point.
By cobwebbing you can see that whether f(0) is above or below p̄, limt→∞ f(t) = p̄.

This result is also very intuitive. It says that if heterozygotes are favored by
selection, both A and a alleles will be maintained in the population. The fixed
point p̄ provided by the model quantifies the ultimate balance between the alleles.
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Case IV. Homozygote dominance waA < wAA and waA < waa.
In this case,

if 0 < f(0) < p̄, then lim
t→∞

f(t) = 0, and if p̄ < f(0) < 1, lim
t→∞

f(t) = 1. (3.47)

The graph of y = φ(p) in this case is shown in Figure 6. The fixed point p̄ is
again inside [0, 1], but this time, the graph of y = φ(p) is below y = p for 0 < p < p̄
and above for p̄ < p < 1. Thus, the slope φ′(p̄) of φ at p̄ is strictly greater that 1,
which implies that p̄ is not stable. The student can check the validity of the limits
stated in (3.47) by cobwebbing.

The interpretation of this case is also clear. If both homozygotes are favored by
selection over heterozygote, the population will eliminate heterozygosity by elim-
inating either allele A (f(t) → 0) or allele a (f(t) → 1). But which allele wins
depends on the initial frequency of A’s versus a’s and the exact values of the selec-
tion coefficients. The the formula, (3.44) for p̄ is a quantitative expression for the
boundary between the region in which a wins and that in which A wins.

The analysis of this section shows that, despite the complex nonlinearity of the
selection model, it is not too difficult to analyze. The conclusions of the analysis are
all what one would expect intuitively. This could be grounds for criticism. What use
is all the work of modeling if the end result only confirms what we know intuitively
must be true? However, the model also give quantitative information. In the case of
heterozygote dominance it tells us exactly what the limiting allele frequency must
be, and in the case of homozygote dominance, the boundary between the intervals
where A takes over or a takes over.

3.4.5 Mean Fitness Increases

This section presents another perspective on how solutions to the selection model
(3.43) evolve. It is sometimes called the Fundamental Theorem of Natural Selec-
tion. Recall that we have called W the fitness function. In the interpretation of
the selection coefficients as survival probabilities, it was shown that W (fA(t)) is
the probability that a randomly selected individual from the infant population of
generation t survives. This justifies interpreting W (fA(t)) as the mean fitness of
generation t.

Theorem 3 For the one locus/two allele selection model (3.41), mean fitness al-
ways increases from generation to generation. That is, for any t

W (f(t+1)) > W (f(t)) if f(t) is not a fixed point.

Comment: The mean fitnessW provides what is called a Lyapunov function for the
difference equation (3.43). Lyapunov functions for a dynamical system are functions
which are either increasing or decreasing along solutions, and they are very useful
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in analyzing the solution behavior. In the case of the selection model, as t → ∞,
the solution x(t) approaches a value p in [0, 1] at which the fitness function achieves
a local maximum, unless the solution is at a fixed point.

To prove Theorem 3 it is only necessary to show W (φ(p)) > W (p), whenever p
is a point in (0, 1) and p is not a fixed point. If this is true, then W (f(t+1)) =
W (φ(f(t)) > W (f(t)), so long as f(t) is not a fixed point, and thus fitness increases.

The proof is just a computation. Plug φ(p) into W and calculate. The result,
after some messy computation, is

W (φ(p))−W (p) =
(φ(p)− p)2

p(1− p)
[W (p) + pwAA + (1− p)waa] . (3.48)

This is strictly positive for every p in the interval (0, 1) such that φ(p) 6= p.

3.4.6 Exercises

Exercise 3.4.4. Consider the study of a locus with two alleles A and a. Assume
that the selection coefficients have been determined to be wAA = 0.5, waa = 0.6 and
wAa = 0.4. If at time t = 0, the genotype frequencies are fAA(0) = 0.4, fAa(0) = 0.2
and faa(0) = 0.4, determine the limiting frequencies of allele A in generation t as t
tends to ∞.

Exercise 3.4.5. Imagine an isolated population that has had a chance to evolve over
a long period of time. Suppose that observations over many generations show that
it in every generation the probability of being born AA is 0.16, of being born Aa
is 0.48, and of being born aa is 0.36. It is known that selection acts and that the
survival probabilities of AA and aa are wAA = 0.1 and waa = 0.2. What is the
selection coefficient wAa for the heterozygote genotype? (Hint: Assume that the
stable genotype frequencies represent the limit of a model with selection.)

Exercise 3.4.6. Suppose it is known that wAA = wAa = w and that w > waa. This
case was not actually covered in the text. Determine limt→∞ pA(t) by analyzing the
shape of φ and invoking cobwebbing.

(Hint: By calculating p̄ show that the only fixed points of φ in [0, 1] are 0 and
1. Calculate the value of φ′(0)—see chapter 2, page 38, and use this and knowledge
about the fixed points to graph the general shape of φ.)

Exercise 3.4.7. Derive the formula for the fixed point p̄ in (3.44). Derive the formula
given in the text for φ′(p).

Exercise 3.4.8. Derive formula (3.48) in the proof that mean fitness increases.

Exercise 3.4.9. Assume that selection coefficients wAA, waa, and wAa are given and
interpret them as survival probabilities, as in the text. Assume in addition that in
the process of reproduction, A mutates to a with probability u and a mutates to A
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with probability v. Let fA(t) and pA(t) be defined as in Section 3.4.3. Argue first
that

fA(t+1) = (1− u− v)pA(t) + v.

Now use the expression found in the text for pA(t) in terms of fA(t) and the selection
coefficients, to find a nonlinear difference equation

fA(t+1) = ψ(fA(t))

for fA(t). (Find the explicit form of ψ.)

3.5 Notes and References

1. Finite difference equation. The first order difference of a sequence {x(t)}
is the sequence {x(t+1) − x(t)}. The term first order difference equation is most
properly applied to equations of the form

x(t+1)− x(t) = ψ(x(t)).

But, as is standard, we have used the term to refer to any equation of the sort
x(t+1) = φ(x(t)); of course this equation can be written in the form x(t+1)−x(t) =
φ(x(t)) − x(t) so that it truly contains a first oreder difference {x(t)}, but this is
rather artificial. Difference equations, as we have defined them, are really examples
of discrete-time dynamical systems.

Finite difference equations occur throughout mathematics, often as the expres-
sion of an algorithm. For example, Newton’s method for finding a root of the func-
tion f is x(t+1) − x(t) = f(x(t))/f ′(x(t)). Euler’s method for approximating the
solution of the first order differential equation x′ = g(x) is x(t+h)−x(t) = hg(x(t)).
The popular autoregressive moving average processes for the analysis of time series
are finite difference equation models.

A source for traditional theory of difference equations is Kenneth S. Miller, An
Introduction to the Calculus of Finite Differences and Difference Equations, Dover
Publications, New York, 1966.

Mathematical ecologists and epidemiologists model many biological phenomena—
predator-prey models, population growth, etc.— with difference equations. In fact,
it was the mathematical ecologist Robert May who first studied how solutions to
the discrete logistic equation,

x(t+1) = λx(t) (1− x(t)) ,

depend upon the parameter λ. He published his first work on this equation in the
journal Nature, volume 261, pages 459-467, 1976. In this study he discovered the
phenomenon of chaos, that is, sensitive dependence on initial conditions, for certain
ranges of values of λ. May’s work was an important inspiration to the development
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of the popularly known theory of chaos in dynamical systems. The behavior of
solutions to even very simple families of difference equations can be very rich. The
textbook, K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos, Springer-Verlag, New York,
1996, is one among several introductory-level books on the subject.

2. The population genetics models presented here are all standard. I have been
guided in my treatment by the following sources

• W.J. Ewens, Population Genetics, Methuen & Co., Ltd., London, 1969.

• J.C. Kingman, Mathematics of Genetic Diversity, CBMS-NSF regional con-
ference series in applied math 34, SIAM, Philadelphia, 1980.

• S. Tavaré, Ancestral Inference in Population Genetics, in Lectures on Proba-
bility Theory and Statistics; editor, J. Picard, Lecture Notes in Mathematics
1837, Springer-Verag, Berlin, 2004.

• D.L. Hartl and A.G. Clark, Principles of Population Genetics, second edition,
Sinauer Associates, Sunderland, MA, 1989.

The first three sources are at a mathematical level higher than this text. The
third book is a standard population genetics text covering the scientific issues and
presenting data, as well as the math.

3.6 Appendix: A Brief Introduction to Difference Equa-
tions

The usual notation for a generic sequence is (x1, x2, x3, . . . , xn, . . . ). In conformity
with the notation of this chapter, we instead use (x(0), x(1), x(2) . . . ), and denote
a generic term of the sequence by x(t). The use of t reminds us that we can often
think of t as will a time parameter. Often

(
x(t)

)
t≥0

, or simply {x(t)}, is used to
abbreviate (x(0), x(1), . . . ).

A difference equation is a recursive equation that determines a sequence of num-
bers. Some simple examples are

x(t+1) = αx(t), t ≥ 0 (3.49)
x(t+2) = x(t+1) + x(t), t ≥ 0 (3.50)
x(t+2) = x(t+1)x(t), t ≥ 0 (3.51)

Difference equations of the sort x(t+1) = φ(t, x(t)), t ≥ 0, where φ is some
given function of (t, x), are called first-order difference equations. Equations of the
sort x(t+2) = ψ(t, x(t+1), x(t)), where ψ is function of (t, x, y), are called second-
order difference equations. In the same way, one can define third, fourth, When
x(t+1) = φ(x(t)), or x(t+2) = ψ(x(t+1), x(t)), that is, when the right-hand side
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does not depend on t explicitly, the difference equation is said to be autonomous. We
will deal exclusively with autonomous equations of first and second order. Equation
(3.49) is an example of an autonomous, first order equation, and equations (3.50)
and (3.51) are examples of autonomous equations.

Given a given a value (the initial value), x(0) = a, for the first term, it is clear
that a first order difference equation defines a unique sequence: x(1) = φ(x(0)) =
φ(a), x(1) = φ(x(1)) = φ(φ(a)), etc. The term x(t+1) following x(t) is well-defined
so long as x(t) is in the domain of φ. This sequence is called the solution of the
difference equation for the given initial condition.

Likewise, given initial values for x(0) and x(1), a second order difference will
have a unique solution. For example, consider (3.50) given x(1) = x(0) = 1. Then
x(2) = 1 + 1 = 2, x(3) = x(2) + x(1) = 2 + 1 = 3, x(4) = x(3) + x(2) = 5, etcetera.
This is just the definition of the famous Fibonacci sequence, in which each term is
the sum of the previous two. In Exercise 3.6.3 you will derive an explicit formula
for x(t) as a function of t.

As a simple exercise, the reader should solve equation (3.51) with initial condi-
tions x(0) = x(1) = 1. This solution is very simple! A slightly more challenging
problem is to solve the equation when x(0) = 1 and x(1) = 2. (Hint: express the
answer in terms of the Fibonacci sequence.)

Two major goals in the study of any difference equation are: to find a solution
in closed form, i.e., a formula expressing the solution x(t) as an explicit function
of t; and to analyze the limiting behavior of x(t) as t → ∞. Of course, if you
can solve the first problem, the solution to the second usually follows as an easy
consequence. Now, except for special cases, finding an explicit solution is usually
hopeless. However, it is often possible to deduce the long-time, limiting behavior,
even when a closed form solution is not known. One technique for doing so is
explained in Section 3.4.

One class of difference equations that do admit explicit solutions is linear dif-
ference equations. A difference equation is said to be linear if it is linear in all the
variables x(t), x(t+1), x(t+2), etc., that appear in it. For example, (3.49) and
(3.50) above are linear difference equations, but (3.51) is non-linear. The general,
autonomous, linear, first order difference equation is

x(t+1) = αx(t) + β. (3.52)

The general, autonomous, linear, second order difference equation is

x(t+1) = αx(t) + γx(t−1) + β. (3.53)

If β = 0, these equations are said, in addition, to be homogeneous, and when β 6=
0, they are called inhomogeneous. These equations are important in elementary
population genetics, and we will devote the rest of this section to formulas and
methods for their solution.
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Consider first-order, linear equations. By solving equation (3.49), we have al-
ready seen that the general solution to (3.52) with β = 0, is x(t) = Aαt. Here, we
use A in place of x(0), to indicate it can be any constant.

To solve (3.52) when β 6= 0, we will take advantage of the linearity of the
equation. Suppose {z(t)} is a given solution to (3.52), and {x(t)} is any other
solution. Then

x(t+1)− z(t+1) = αx(t) + β −
[
αz(t) + β

]
= α[x(t)− z(t)].

Thus {x(t) − z(t)} is a solution of the linear, homogeneous version of (3.52), and
so x(t)− z(t) = Aαt for some constant A. Therefore, given one, particular solution
{z(t)} of (3.52), any other solution has the form ,

x(t) = Aαt + z(t), (3.54)

which means the right-hand side is a general solution.
The trick is now to guess a particular solution {z(t)}. Suppose we can find a

fixed point of the equation (3.52). This is a value b such that b = αb+ β. Then the
constant sequence, z(t) = b for all t is a particular solution, because

z(t+1) = b = αb+ β = αz(t) + β.

But, as long as α 6= 1, b = αb + β has the unique solution b = β/(1 − α), and
we find a constant particular solution, which can be inserted in (3.54) to find the
general solution. The explicit form of this solution, its properties as t → ∞, and
what happens when α = 1 are all summarized in the next result.

Proposition 1 (i) If α 6= 1, the general solution to (3.52) is

x(t) = Aαt +
β

1− α
, t ≥ 0, where A is an arbitrary constant, (3.55)

and the solution to (3.52) satisfying the initial condition x(0) = x0 is

x(t) =
[
x0 −

β

1− α

]
αt +

β

1− α
, t ≥ 0. (3.56)

(ii) If |α| < 1, then, no matter what A is, lim
t→∞

x(t) =
β

1− α
, which is the unique

fixed point of (3.52).
If |α| > 1, then limt→∞ |x(t)| = ∞ unless x(0) = β

1−α .

(iii) If α = 1, the general solution to (3.52) is x(t) = A + βt, t ≥ 0, and the
solution with initial condition x(0) = x0 is x(t) = x0 + βt, t ≥ 0. There is no fixed
point, unless β = 0, in which case all points are fixed points and all solutions are
constant.
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The statement in equation (3.55) of this proposition is a consequence of (3.54)
and the fact that z(t) = β/(1−α), t ≥ 0 is a particular solution. To find the solution
in (3.56) with x(0) = x0, set A+ β/(1− α) = x(0) = x0 and solve for A.

The limiting behavior described in part (ii) of the proposition follows directly
from the closed form solution in part (i).

Part (iii) can be checked directly by substituting the proposed solution into both
sides of (3.52) when α = 1 and showing that there is equality. �

We turn now to second-order, linear equations. The procedure will be similar.
First, find the general solution to the homogeneous equation, and then represent
the general solution to the inhomogeneous solution as a particular solution plus the
general solution to the homogeneous equation. It is possible to give a complete
theory for the second-order equation, as we did in Proposition 1 for first-order
equations. We shall not do so here, but only treat cases needed in Chapter 3.

To find the general solution of the homogeneous equation

x(t+1) = αx(t) + γx(t−1), (3.57)

we look for solutions of the form x(t) = rt. By substituting this in (3.57), we find
that r must satisfy, rt+1 = αrt + γrt−1, or, dividing through by rt−1

r2 − αr − γ = 0. (3.58)

This is called the characteristic equation of (3.57). If r is a root, then rt is indeed
a solution to (3.57). There are two cases to consider, according to whether the
characteristic equation has two distinct roots or only one root.

Case (i): If there are two distinct roots r1 and r2, we obtain two solutions rt
1

and rt
2, which are independent from one another in the sense that one is not a scalar

multiple of the other. We claim then that x(t) = Art
1 +Brt

2 is the general solution
to (3.57). That this expression does solve (3.57) is a consequence of linearity and
homogeneity, as follows. Since {rt

1} and {rt
2} are both solutions,

x(t+2) = Art+2
1 +Brt+2

2 +A
[
αrt+1

1 + γrt
1

]
+B

[
αrt+1

2 + γrt
2

]
= α

[
Art+1

1 +Brt+1
2

]
+ γ

[
Art

1 +Brt
2

]
= αx(t+1) + γx(t),

and thus {x(t)} solves (3.57).
To show that x(t) = Art

1 + Brt
2 is the general solution, it is necessary to show

that A and B can be chosen to match arbitrary initial conditions, x(0) = x0 and
x(1) = x1. But this just requires,

A+B = x(0) = x0 and Ar1 +Br2 = x(1) = x1. (3.59)

Indeed, there is a solution for A and B no matter what x0 and x1 are, because
r1 6= r2 by assumption.
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Example 3.6.1. Solve

x(t+1) = −3x(t)− 2x(t−1), x(0) = 1, x(1) = 0. (3.60)

The characteristic equation is r2 +3r+2 = 0, which has roots r1 = −1 and r2 = −2.
Thus the general solution to (3.60) is x(t) = A(−1)t+B(−2)t. The initial conditions
require 1 = x(0) = A + B and 0 = x(1) = −A − 2B; these are easily solved to
find A = 2, B = −1. Hence x(t) = 2(−1)t − (−2)t.

Case (ii): Suppose the characteristic equation has a single root r. This occurs
when β = −α2/4, and then the root is r = α/2, and we obtain the solutions
x(t) = A(α/2)t. An independent solution is needed to get the general solution. The
reader can check that, in this case, t(α/2)t is a second solution. Thus, the general
solution has the form, x(t) = Art +Bt(α/2)t.

Consider, finally equation (3.53) with β 6= 0. (This will not be needed later, but
we include it for completeness.) Again, if {z(t)} is any particular solution of this
equation, the general solution is {y(t)+z(t)}, where {y(t)} is the general solution of
the homogeneous version of (3.53). The reader should check that this is true using
an argument like the one we gave for first-order equations. As before, we can try
finding a constant particular solution. This will not be possible if α + γ = 1, but
when α + γ 6= 1, b = β/(1 − α − γ) will be a constant, particular solution. We
illustrate with an example and go no further with the theory.

Example 3.6.1, continued. Solve

x(t+1) = −3x(t)− 2x(t−1) + 1, x(0) = 1, x(1) = 0. (3.61)

We look for a constant solution of the form x(t) = w, t ≥ 0. Substituting in
(3.61), requires w = −3w − 2w + 1, or w = 1/6. We found previously that the
general solution to the homogeneous equation x(t+1) = −3x(t)− 2x(t−1) is x(t) =
A(−1)t + B(−2)t. Therefore the general solution to (3.61) is x(t) = A(−1)t +
B(−2)t + 1/6. The initial conditions require 1 = x(0) = A + B + 1/6 and
0 = x(1) = −A − 2B + 1/6, and solving gives A = 3/2, B = −2/3. Thus, the
solution to (3.61) is x(t) = (3/2)(−1)t − (2/3)(−2)t + 1/6. Some algebra shows
that x(t) = (−1)t(1/6)[9 − 2t+2] + 1/6, and for t ≥ 2 this will oscillate between
positive and negative values with ever increasing amplitude, as t increases. Hence,
the solution will not converge to the constant solution 1/6. �

The techniques developed in this section can be developed into a theory that
completely describes the solutions to linear difference equations of any order.

3.6.1 Problems

Exercise 3.6.1. a) Solve explicitly and determine limt→∞ x(t) or show it does not
exist:
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(i) x(t+1) = (1/2)x(t) + 2, x(0) = 2.
(ii) x(t+1) = 2x(t) + 2, x(0) = 2.

b) Find and plot the first 4 terms in the solution of x(t+1) = (2/3)x(t) + (1/x2(t)),
x(0) = 3.
c) What is the fixed point of the equation of part b)? Does the solution appear to
be converging to the fixed point?

Exercise 3.6.2. Consider x(t+1) = αx(t) + βx(t−1), where 4β = −α2, so that
the characteristic equation has only one root r = α/2. Show that Art +Btrt is the
general solution to the difference equation.

Exercise 3.6.3. The difference equation, x(t+1) = x(t) + x(t − 1), with initial
conditions x(0) = 1 and x(1) = 1, defines the Fibonacci sequence. Solve the equation
to find a formula for x(t) as a function of t.

Exercise 3.6.4. a) The object of this part is to find a particular solution to x(t+1) =
αx(t) + βx(t−1) + γ, when γ 6= 0, and α + β = 1. It does not have a constant
particular solution.

However, show that if, in addition, α 6= 2, there is a constant A such that
x(t) = At is a particular solution.
b) Show that if α = 2 and β = −1 there is a particular solution of the form Bt2.
c) Solve x(t+1) = (1/3)x(t) + (2/3)x(t−1) + 1, x(0) = 1, x(1) = 0.

Exercise 3.6.5. Find the solution of x(t+1) = −(5/6)x(t) − (1/6)x(t−1) + 1,
x(0) = 0, x(1) = 0. Show that the solution tends to the constant solution.

Exercise 3.6.6. (a) Consider the equation x(t+1) = αx(t) + g(t+1), where (g(t))t≥1

is a given sequence. For convenience, define g(0) = 0. Show that x(t) = Aαt +
t∑

s=0

αt−sg(s)

is a solution for any constant A.

(b) Consider x(t+1) = h(t+1)x(t) + g(t+1), the fully time-inhomogeneous, first-
order, linear difference equation . As before, set g(0) = 0. For 0 ≤ s < t, define
T (s, t) = h(s+1)h(s+2) · · ·h(t); for all t ≥ 0, define T (t, t) = 1. Show that

x(t) = AT (0, t) +
t∑

s=0

T (s, t)g(s)

is a solution for any constant A.


