
Chapter 2

Probability Theory

Chapter 2 is a summary of the probability theory required by this text. It is assumed
that the reader has taken an upper level, calculus-based probability course already,
and this chapter is intended as a reference to be consulted if needed. Section 2.1
provides all the background necessary for Chapter 3 on population genetics. We
recommend reading only this section before going on, and then returning to the
later parts of Chapter 2 when and if necessary.

2.1 Elementary probability; random sampling

2.1.1 Probability spaces

A probability space consists of:

(i) a set Ω called the outcome space;

(ii) a class of subsets of Ω called events; and,

(iii) a rule P that assigns a probability P(U) to each event U .

This structure is a template for modeling any experiment with random outcome:
the set Ω is a list of all the possible outcomes of the experiment; a subset U of Ω
represents the ‘event’ that the outcome of the experiment belongs to U ; and P(U)
is the probability that event U occurs. The assignment, P, is called a probability
measure. It is required to satisfy the following properties, called the axioms of
probability:

(P1) 0 ≤ P(U) ≤ 1 for all events U ;

(P2) P(Ω) = 1;

(P3) If U1, U2, . . . , Un are disjoint events, meaning they share no outcomes in com-
mon,

P(U1 ∪ · · · ∪ Un) = P(U1) + · · ·+ P(Un). (2.1)
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(P4) More generally, if U1, U2, U3, . . . is an infinite sequence of disjoint events, then

P

( ∞⋃
i=1

Ui

)
=

∞∑
i=1

P(Ui). (2.2)

What exactly does it mean to say the probability of event U is some number
P(U)? Axioms (P1)—(P4) don’t say! This should remind you of Euclidean ge-
ometry; its axioms, which are assumed properties of points and lines, leave points
and lines undefined. But just as our intuition about physical space guides axioms
of geometry, so does intuition about how we assign likelihoods to future events,
when gambling or making predictions, guide axioms of probability. For example,
in repeating an experiment over and over, we see that different events will occur
with different frequencies, and we might view a probability as an ideal frequency
of occurrence in repeated trials. Thus, assigning a probability of 1/2 to heads for
a coin toss, would mean we expect, on average, half of future tosses to be heads.
Axioms (P1)—(P4) can all be motivated in a simple manner from this viewpoint.
As a frequency, P(U) will necessarily take a value between 0 and 1, as required by
axiom (P1). Since Ω is the set of all possible outcomes, the fraction of trials in
which the outcome falls in Ω is P(Ω) = 1, as required by axiom (P2). If U and
V are two disjoint events, the fraction of times an outcome is in U or in V is the
sum of the fraction of times it is in U and the fraction of times it is in V . Axiom
(P3) generalizes this addition principle to arbitrary finite, disjoint unions and (P4)
generalizes it to unions of infinite sequences of disjoint events. Axioms (P3) and
(P4) are called additivity axioms. (Actually (P3) is a special case of (P4). We did
not need to state it separately, but it is useful to distinguish the finite from the
infinite case in developing probability theory.)

We should point out that many probabilists and statistician hotly contest inter-
preting probabilities as an objectively defined frequencies, as we did here to motivate
axioms (P1)—(P4). They do generally accept these axioms, but view probabilities
as subjective opinions subject to modification by evidence. We mean to take no sides
on this issue. But the frequency approach provides simple intuition and is especially
relevant to to repeated sampling, a procedure used over and over in modeling and
statistical practice.

Examples 2.1.1.
(a) (Roll of a fair die.) Consider rolling a die and recording the number that

is face up when the die comes to a rest. The outcome space of this experiment is
Ω = {1, 2, 3, 4, 5, 6}. The event of rolling precisely number i is the singleton subset
{i} of Ω. The die is fair if each of the 6 possible outcomes has the same probability,
and since, by axioms (P3) and (P2) the sum of these 6 equal probabilities must be
1, we find P({i}) = 1/6 for each 1 ≤ i ≤ 6. This completely determines P. For
example, the event of rolling an even number is represented by the subset {2, 4, 6}.
Since it is the union of the singleton events {2}, {4}, and {6}, axiom (P3) implies
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P({2, 4, 6}) = 1/6 + 1/6 + 1/6 = 1/2. By the same reasoning, for any subset U
of {1, 2, 3, 4, 5, 6}, P(U) = |U |/6, where |U | denotes the size of U . Granted, this
example belabors the obvious, but it illustrates in very simple form the application
of the probability axioms.

(b) (General model for the roll of a die.) The general model for the roll of a
die, possibly biased, requires specifying pi = P

(
{i}
)
, the probability of rolling i,

for each i = 1, 2, . . . , 6. The only constraints on the vector (p1, . . . , p6) are that its
entries be non-negative and that they sum to 1. By axiom (P3), for any event U ,
P(U) is the sum of the probabilities of the outcomes i belonging to U ; for example,
P({2, 4, 6}) = p2 + p4 + p6 is the probability of an even roll.

(c) (General discrete probability space.) A probability space is called discrete
if Ω is a finite set or a set, Ω = {ω1, ω2, . . . }, whose elements can be indexed by
the natural numbers. (The latter type of set is called countably infinite.) When
Ω is discrete, a probability space on Ω can be completely specified by assigning a
probability, pω = P({ω}), to each singleton event {ω}. For any event U in Ω which
is not a singleton set, axioms (P3) and (P4) imply

P(U) =
∑
ω∈U

P ({ω}) =
∑
ω∈U

pω

because U is the disjoint union of the outcomes in U . (Here, the notation indicates
that the sum is over all ω in U .) The only restrictions on the assignment, {pω; ω ∈
Ω}, are that 0 ≤ pω ≤ 1 for all ω, which must hold because of axiom (P1), and that
1 = P(Ω) =

∑
ω∈Ω

pω, which must hold because of axiom (P2). �

Three simple consequences of axioms (P1)—(P3) are repeatedly used.

(1) If U is an event, let U c denote the complement of U , that is all elements in
Ω that are not in U . Then, by the finite additivity axiom and axiom (P2),
1 = P(Ω) = P

(
U ∪ U c) = P(U) + P(U c). Hence,

P(U c) = 1− P(U). (2.3)

In particular, since the empty set, ∅, equals Ωc, P(∅) = 1 − P(Ω) = 0. (The
empty set, ∅, should be thought of as the event that, in a trial of the experi-
ment, nothing happens, which has zero probability.)

(2) If A and B are events and if A is a subset of B, then P(A) ≤ P(B).

This is a consequence of axiom (P3). Since B = A∪ [B−A] and A and B−A
are disjoint if A ⊂ B, P(B) = P (A) + P(B − A). But P(B − A) ≥ 0, and it
follows that P(B) ≥ P(A).
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(3) (Inclusion-Exclusion Principle) P(A ∪B) = P(A)+P(B)−P(A ∩B).

Indeed, since A ∪ B is the disjoint union of A and B ∩ Ac, P(A ∪ B) =
P(A) + P(B ∩ Ac), and since B is the disjoint union of B ∩ A and B ∩ Ac,
P(A∪B) = P(A)+ P(B ∩Ac), and hence P(B ∩Ac) = P(B)−P(A∩B). Thus,
P(A ∪B) = P(A) + P(B ∩Ac) = P(A) + P(B)− P(A ∩B).

The facts just stated depend only on axiom (P3). Axiom (P4) has the following
important consequences; the proofs are omitted.

if A1 ⊂ A2 ⊂ · · · , then P(
∞⋃
1

An) = lim
n→∞

P(An). (2.4)

if A1 ⊃ A2 ⊃ · · · , then P(
∞⋂
1

An) = lim
n→∞

P(An). (2.5)

2.1.2 Random sampling

In this section and throughout the text, if U is a finite set, |U | denotes its cardinality,
that is, the number of elements in U .

A basic model in both statistical practice and probability theory is the random
sample. Let S denote a finite set, called the population. A (single) random sample
from S is a random draw from S in which each individual has an equal chance to be
chosen. In the probability space for this experiment, the outcome space is S, and
the probability of drawing any particular element s of S is

P({s}) =
1∣∣S∣∣ .

P assigns probabilities uniformly to the singleton outcomes, so is sometimes called
the uniform probability measure on S. It follows that if U is any subset of S,

P(U) =
∑
s∈U

P({s}) =
∑
s∈U

1∣∣S∣∣ =

∣∣U ∣∣∣∣S∣∣ . (2.6)

In many applications, each individual in the population bears an attribute or
descriptive label. For example, in population genetics, each individual in a popula-
tion of organisms is labeled by its genotype. In a bag of marbles, each of which is
either red, yellow, or blue, color is a label. If x is a label attaching to individuals in
S, the frequency of x in S is the ratio,

fx
4
=

number of individuals in S with label x

|S|
.

Because random sampling is modeled by a uniform probability measure,

P (randomly selected individual bears label x) = fx. (2.7)
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This is simple, but is basic in population genetics.

Example 2.1.2. Random mating; Part I. One assumption behind the textbook anal-
ysis of Mendel’s pea experiments—see Chapter 1—is that each individual chosen
for a random cross is sampled randomly from the population. Consider a popula-
tion of N pea plants, and suppose k of them have the genotype GG and ` of them
genotype Y Y for pea color. Thus N − k− ` plants have the heterozygous genotype
Y G. Suppose the first parent for a cross is chosen by random sampling from the
population. What is the probability it is heterozygotic? According to (2.1),

P
(
Y G plant is selected

)
= fY G =

N−k−`

N
.

�.

In many applications, populations are sampled repeatedly. For example, statis-
ticians will sample a large population multiple times to obtain data for estimating
its structure. Models of population genetics often posit that populations evolve
from one generation to the next by repeated sampling. Repeated random sampling
may be performed without replacement, in which case the each sampled individual
is removed from the population, or with replacement, in which case each sampled
individual is returned to the population and may be sampled again.

Imagine sampling a population, S, n times with replacement. The outcome
space is then the set of all sequences of the form (s1, . . . , sn), where si ∈ S for each
i. This set is denoted Sn, it is called the n-fold product space of S, and it contains
|S|n sequences. A random sample (with replacement) of size n is a sample in which
every sequence in Sn is equally likely. This is a direct generalization of the definition
of a single random sample given above. The probability measure modeling a random
sample of size n is therefore just the uniform measure on Sn:

P ({(s1, . . . , sn)}) =
1
|S|n

, for each (s1, . . . , sn) ∈ Sn; and (2.8)

P(V ) =
|V |
|S|n

, for any subset V of Sn. (2.9)

This notion of random sample is consistent in the sense that a subsequence of m
samples from a random sample of size n > m, is a random sample of size m. For
example, consider just the outcome s1 of the first draw. The event that s1 = s in a
sample of size n is the subset of sequences in Sn,{

(s1, s2, . . . , sn) : s1 = s, sj ∈ S, for 2 ≤ j ≤ n
}

.

The cardinality of this set is just the number of sequences (s2, . . . , sn) with length
n− 1 whose elements come from S, and this number is |S|n−1. Hence,

P
({

(s1, s2, . . . , sn) : s1 = s, sj ∈ S, for 2 ≤ j ≤ n
})

=
|S|n−1

|S|n
=

1
|S|

.
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This is exactly the probability of drawing s in a single sample.
A random sample from S without replacement is defined in a similar way. Of

course, if (s1, . . . , sn) is a sample from S without replacement, n must be less than
or equal to S. Assume this is the case. Then the outcome space is the set Ω of all
sequences (s1, . . . , sn) of elements of S with no repeats, and the cardinality of Ω is
|Ω| = |S|(|S| − 1) · · · (|S| − n + 1). A random sample of size n without replacement
is one in which every sequence in Ω is equally probable, so it is modeled by the
uniform distribution on Ω.

In this text, the phrase ‘random sampling’, when used without further clarifica-
tion, will always mean sampling with replacement.

Example 2.1.2, part II. The standard model for a random cross in Mendel’s pea
experiment assumes the plants to be crossed are chosen by a random sample of
size 2. (Since this is random sampling with replacement, it is possible that a plant
is crossed with itself.) In the set up of part I of this example above, what is the
probability that a GG genotype is crossed with a Y Y genotype?

In this case, the outcome space is the set of all ordered pairs (s1, s2) where s1

and s2 belong to the population of plants. Let U be the event that one of these has
genotype GG and the other genotype Y Y . Since there are k plants in the population
of type GG and ` of type Y Y , there are k · ` pairs (s1, s2) in which s1 is type GG
and s2 is type Y Y . Likewise there are ` · k pairs in which s1 is type Y Y and s2 is
type GG. It follows that

∣∣U ∣∣ = 2k` and

P(U) =
2k`

N2
= 2fGGfY Y . �

Example 2.1.2, part III. Suppose we take a random sample of 10 plants from a
population of N of Mendel’s peas, of which, as in Part I of this example, k have
genotype GG. What is the probability that exactly 6 of those sampled plants have
genotype GG? The event V in this case is the set of sequences of 10 plants from
the population for which a GG genotypes appears exactly 6 times. Now, there are(
10
6

)
ways the 6 positions at which GG types occur can be distributed among the 10

samples. For each such arrangement of these 6 positions, there are n choices of GG
plants to place in each of these positions, and N − k choices of non-GG plants to
place in the remaining 10−6 = 4 positions. Thus,

∣∣V ∣∣ = (106 )k6(N − k)4. By (2.9),

P(V ) =

(
10
6

)
k6(N − k)4

N10
=
(

10
6

)(
k

N

)6(
1− k

N

)4

=
(

10
6

)
f6

GG(1− fGG)4.

(This problem is not so interesting biologically, but it serves as a review of binomial
probabilities!) �

By generalizing the argument of the last example, the probability that individ-
uals labeled x appear m times in a random sample of size n from some population
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S is the binomial probability (
n

m

)
fm

x (1− fx)n−m. (2.10)

2.1.3 Randomly selecting a point from [0, 1]

The purpose of this section is to discuss an example of a probability space that is
not discrete. Consider drawing a point at random from the interval [0, 1]. We would
like to build a probability space modeling a selection procedure that does not favor
any region of [0, 1] over any other. For this, there is a natural candidate. For a
subset U in [0, 1], let P(U) be the total length of U . Thus P(U) is the fraction of
[0, 1] occupied by U , and since subsets of equal length have the same probability,
it does not favor any particular region. For this reason, length measure on [0, 1] is
called the uniform measure on [0, 1].

However, there are issues with this definition. First, how do we define P(U) for
every subset U of [0, 1]? It is clear that if U is a union ∪∞1 Ii of disjoint intervals,
we should define P(U) =

∑∞
1 length(Ii), if axiom (P4) is to hold. But the class of

subsets of [0, 1] is very rich, and includes many subsets that cannot be represented
as unions of intervals. Second, even supposing we have a method to define P(U)
for any U , can we then verify the additivity axiom, (P4)? The resolution of these
problems is subtle. Assuming standard axioms of set theory used in analysis, it is
not possible to extend length measure to all subsets of U in such way that (P4)
holds and P(U) is unchanged by translation of U . A probability space satisfying all
the axioms can be constructed, but only by restricting the class of subsets for which
P(U) is defined. This theory is too advanced for this text, and we only want the
reader to be aware of the issue. Fortunately, for applications it is rarely necessary to
go beyond events which are unions of intervals, and then total length is well-defined
and, by the advanced theory, perfectly valid to use.

As a probability measure, the length measure has a peculiar property. Let a be
any point of [0, 1]. The event of selecting exactly a is the singleton set {a}, whose
length is zero, and so the probability of observing any particular a is zero. Yet, if
the experiment is run, some a is selected! We can weasel out of this conundrum by
recognizing that physical quantities cannot be measured to arbitrary accuracy. If
points are measured to a decimal accuracy of, say, five places, the result is really a
draw from the finite set of decimal numbers of the form 0.r1r2r3r4r5 or the number
1 itself. There are 105 + 1 such numbers in [0, 1], and a uniform draw means they
all have equal probabilities. So, why not just work with this discrete model in
the first place? The answer is that the probability space given by length measure
on [0, 1] is independent of the accuracy we measure to, it is simpler to work with
mathematically, and it is an excellent approximate model if measurements are very
accurate.
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2.1.4 Independence

Two events U and V in a probability space are said to be independent if

P(U ∩ V ) = P(U)P(V ). (2.11)

This property is called ‘independence’ because of the theory of conditional proba-
bility. When P(V ) > 0, the conditional probability of U given V is defined as

P
(
U
∣∣V ) 4= P(U ∩ V )

P(V )
, (2.12)

and it represents the probability of U given that V has occurred. (Conditional
probability will be reviewed in more depth presently.) If U and V are independent
and both have positive probability, then P(U

∣∣V ) = [P(U)P(V )]/P(V ) = P(U), and
likewise P(V

∣∣U) = P(V ); thus the probability of neither U nor V is affected by
conditioning on the other event, and this is the sense in which they are independent.

Three events U1, U2, U3 are said to be independent if they are pairwise independent—
that is Ui and Uj are independent whenever i 6= j— and, in addition

P(U1 ∩ U2 ∩ U3) = P(U1)P(U2)P(U3). (2.13)

The reason for the last condition is that we want independence of the three events
to mean that any one event is independent of any combinations of the other events,
for example, that U1 is independent of U2, of U3, of U2 ∩ U3, U2 ∪ U3, etc. Pairwise
independence is not enough to guarantee this, as the reader will discover by doing
Exercise 2.4. However, adding condition (2.13) is enough—see Exercise 2.5.

The generalization to more than three events is straightforward. Events U1, . . . , Un

are independent if
P(Ur1 ∩ · · · ∩ Urk

) = P(Ur1) · · ·P(Urk
) (2.14)

for every every k, 2 ≤ k ≤ n, and every possible subsequence 1 ≤ r1 < r2 <
· · · < rk ≤ n. This condition will imply, for example, that event Ui is independent
of any combination of events Uj for j 6= i.

Independence is fundamental in multiple random sampling with replacement.
Imagine a random sample, (s1, . . . , sn), of size n from a population S. Let B1,
B2,. . . , Bn be subsets of S and let U1 be the event that the first sample s1 is in
B1, let U2 be the event that the second sample is in B2, and so on. Then, we
claim that no matter what B1, . . . , Bn are, the events U1, . . . , Un are independent.
We summarize this state of affairs by saying that the successive samples in the
sequence of n samples are independent. The converse is also true. These facts are
so important, they deserve a formal statement.

Proposition 1 In repeated random sampling (with replacement) the outcomes of
the different samples are independent of one another. Conversely, if n single random
samples from S are independent, they constitute a random sample of size n.
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We show this when n = 3; the notation is then simpler, and no new ideas are
required for the general case. Let B1, B2, and B3 be three subsets of S. Consider
U1, the event that the first element, s1, in a random sample (s1, s2, s3), falls in
B1. It was shown above that s1 by itself is a single random sample, namely that
P(U1) = |B1|/|S|. Exactly the same reasoning applies to U2 and U3, so P(U2) =
|B2|/|S| and P(U3) = |B3|/|S|. Now consider U1 ∩ U2 ∩ U3. This is the set of all
sequences (s1, s2, s3) such that s1 ∈ B1, s2 ∈2, and s3 ∈ B3 and so this set contains
|B1| · |B2| · |B3| sequences. By the definition of multiple random sample

P
(
U1 ∩ U2 ∩ U3

)
=

∣∣B1

∣∣ · ∣∣B2

∣∣ · ∣∣B3

∣∣∣∣S∣∣3 =

∣∣B1

∣∣∣∣S∣∣ ·
∣∣B2

∣∣∣∣S∣∣ ·
∣∣B3

∣∣∣∣S∣∣ = P(U1)P(U2)P(U3).

This establishes (2.13) for any B1, B2, and B3.
It is also necessary to show pairwise independence. But this is a consequence of

what we have just shown, because, for instance, U1 ∩ U2 = U1 ∩ U2 ∩ S. It follows
that P(U1∩U2) = P(U1∩U2∩S) = P(P(U1)(U)2)P(S) = P(U1)P(U2), since P(S) = 1,
proving independence of U1 and U2. The independence of U1 and U3 and of U2 and
U3 is shown in the same way.

Assume conversely, that the three draws are independent. Let U1 = {s1}, U2 =
{s2}, and U3 = {s3}. For each i, P(Ui) = 1/|S|. By independence,

P
(
{(s1, s2, s3)}

)
= P(U1 ∩ U2 ∩ U3) = P(U1)P(U2)P(U3) =

1
|S|3

.

Thus P is uniform measure on S3, which means it describes a random sample of size
3.

2.1.5 The law of large numbers for random sampling

Suppose we observe the fraction of times event U occurs as we repeat an experiment
over and over. A law of large number is a theorem that states conditions under which
this fraction tends to the probability P(U) of U , as the the number of trials tends
to infinity. It establishes in what sense and under what hypotheses a frequency
interpretation of probability, as described in Section 2.1.1, is valid,

For example, a law of large numbers holds for random sampling. Let S be a
finite population, and imagine repeatedly sampling from S with replacement. If n
is any positive integer and A is a subset of S, let

f (n)(A) =
number of sampled values in A among the first n samples

n

denote the fraction of times A occurs in the first n samples. It is called the empirical
frequency of A in the first n trials.
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Theorem 1 (Strong Law of Large Numbers for random sampling.) For a sequence
of independent random samples from S,

lim
n→∞

f (n)(A) =

∣∣A∣∣∣∣S∣∣ = P(A), with probability one. (2.15)

If x is a label, and if f
(n)
x is the empirical frequency of individuals with label x

in the first n samples, then Theorem 1 says,

lim
n→∞

f (n)
x = fx.

The proof of the strong law is advanced. There is also a weak law of large
numbers, which has an elementary proof. Chebyshev’s inequality (treated later in
this chapter) implies that for any a > 0,

P
(∣∣∣∣f (n)

x −fx

∣∣∣∣ > a

)
≤ fx(1− fx)

na2
≤ 1

4na2
. (2.16)

(The last inequality is a consequence of the fact that if 0 ≤ p ≤ 1, p(1− p) ≤ 1/4.)
It follows that

lim
n→∞

P
(∣∣∣∣f (n)

x −fx

∣∣∣∣ > a

)
= 0, for any a > 0. (2.17)

This is the weak law.
The difference between the strong and weak laws is subtle. The strong law

implies the weak law, but the weak law in and of itself does not imply the strong
law; we will not try to explain this point. Inequalities like that of Chebyshev, which
imply the weak law, are very useful in practice because they give quantitative bounds
on the probabilities of the difference between empirical frequencies and theoretical
probabilities. Another inequality worth mentioning is Chernoff’s inequality:

P
(∣∣f (n)(A)− f(A)

∣∣ > a
)

< 2e−2na2
. (2.18)

This gives a much sharper bound than the Chebyshev inequality. Its proof, which
uses the Markov inequality and moment generating functions, is omitted here.

The law of large numbers motivates an important approximation used in pop-
ulation genetics models. Consider repeated random sampling from a population of
organisms in which the frequency of some genotype, call it L, is fL. By the weak
law of large numbers, the frequency of L in a large sample will be close to fL with
high probability. Therefore, when studying large samples from a population, we can
replace the empirical frequency, which is random, by fL, which is not, and obtain a
good approximate model. This idea is at the heart of the infinite population models
studied in Chapter 3.
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2.1.6 Conditioning, Rule of total probabilities, Bayes’ rule

Let U and V be two events, with P(V ) > 0. Recall that the conditional probability
of U given V is defined as

P
(
U
∣∣V ) 4= P(U ∩ V )

P(V )
,

and is interpreted as the probability U occurs knowing that V has occurred. Condi-
tional probabilities are often used for modeling and for calculation when events are
not independent. A very important tool for these applications is the rule of total
probabilities.

Proposition 2 Let the events V1, · · · , Vn a form a disjoint partition of the outcome
space Ω, that is, Ω = V1 ∪ · · · Vn and Vi ∩ Vj = ∅ if i 6= j. Assume that P(Vi) > 0
for all i. Then for any event U ,

P(U) = P(U
∣∣V1)P(V1) + P(U

∣∣V2)P(V2) + · · ·+ P(U
∣∣Vn)P(Vn). (2.19)

This is easy to derive. For any i, the definition of conditional probability implies

P(U ∩ Vi) = P(U
∣∣Vi)P(Vi). (2.20)

Since V1, . . . , Vn form a disjoint partition of Ω, U = [U ∩ V1]∪[U ∩ V2]∪· · ·∪[U ∩ Vn],
and it follows from axiom (P3) for probability spaces that

P(U) = P(U ∩ V1) + · · ·+ P(U ∩ Vn)
= P(U

∣∣V1)P(V1) + · · ·+ P(U
∣∣Vn)P(Vn).

Example 2.1.3. In a cross of Mendel’s pea plants, each parent plant contributes one
allele at each locus. Thus a cross of a GG with another GG produces a GG offspring
and the cross of a GG with a Y Y produces a GY offspring. What happens if a parent
is Y G? In this case, it is assumed that the parent passes on each allele with equal
probability, so it contributes Y with probability 0.5 and G with probability 0.5.
This can be expressed as a statement about conditional probabilities:

P(G
∣∣GY ) = P(Y

∣∣GY ) = 0.5.

where here P(G
∣∣GY ) is shorthand for probability that a parent contributes G to an

offspring given that it has genotype GY . Now suppose a plant is selected at random
from a population and used to fertilize another plant. What is the probability this
selected plant contributes allele G to the offspring? Let G represent the event that
it contributes G. Let GG, GY , and Y Y represent the event that the selected plant
has genotype GG, GY , or Y Y , respectively, and recall that random sampling means
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P(GG) = fGG, P(GY ) = fGY , P(Y Y ) = fY Y . Then clearly, P(G
∣∣GG) = 1 and

P(G
∣∣Y Y ) = 0. By the rule of total probabilities,

P(G) = P(G
∣∣GG)P(GG) + P(G

∣∣GY )P(GY ) + P(G
∣∣Y Y )P(Y Y ) = fGG + (0.5)fGY ,

is the probability the randomly selected parent passes G to an offspring. �

The rule of total probabilities generalizes to conditional probabilities. Again, let
V1, . . . , Vn be a disjoint partition of Ω. Assume P(W ) > 0. Then

P(U
∣∣W ) =

n∑
i=1

P
(
U
∣∣Vi ∩W

)
P(Vi

∣∣W ). (2.21)

The proof is very similar to that for the ordinary rule of total probabilities. Write
out all conditional expectations using the definition (2.12) and use the fact that
P(U∩W ) =

∑n
i=1 P(U∩Vi∩W ). The details are left as an exercise. This conditioned

version of the total probability rule will be used for analyzing Markov chains in
Chapter 4.

Another important formula using conditional probabilities is Bayes’ rule. By
the total probability rule, P(U) = P(U

∣∣V )P(V ) + P(U
∣∣V c)P(V c), where V c is the

complement V c = Ω − V of V . Also, P(U ∩ V ) = P(U
∣∣V )P(V ). Combining these

formulae gives Bayes’ rule:

P(V
∣∣U) =

P(U ∩ V )
P(U)

=
P(U

∣∣V )P(V )
P(U

∣∣V )P(V ) + P(U
∣∣V c)P(V c)

. (2.22)

Example 2.1.4. Suppose, in the previous example, that the randomly chosen parent
plant contributes G? What is the probability that the parent was GY ? Keeping
the same notation, this problem asks for P(GY

∣∣G), and by Bayes’ rule it is

P(GY
∣∣G) =

P(G
∣∣GY )P(GY )

P(G)
=

(0.5)fGY

fGG + (0.5)fGY
=

fGY

2fGG + fGY
. �

Example 2.1.5. This example is a preview of population genetics models incorporat-
ing selection. Consider a diploid species that has three genotypes Aa, Aa, and aa, at
a locus. Let U denote the event a (randomly chosen) individual survives from birth
to reproductive maturity. We can quantify the effects genotype has on the proba-
bility of survival by the conditional probabilities, wAA = P(U |AA), wAa = P(U |Aa),
waa = P(U |aa), where, for example, P(U |AA) is the probability of survival from
birth to maturity of an individual with genotype AA. Consider a generation in
which the genotype frequencies at birth are fAA, fAa, and faa.

a) What is the probability of U?
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b) What is the probability that an individual has genotype AA, given that it
has survived to reproductive maturity?

The answer to a) is obtained from the rule of total probabilities:

P(U) = P(U |AA)fAA + P(U |Aa)fAa + P(U |aa)faa = wAAfAA + wAafAa + waafaa.

Question b) asks for P(AA|U), and this is calculated by Bayes’ rule:

P(AA|U) =
P(U |AA)fAA

P (U)
=

wAAfAA

wAAfAA + wAafAa + waafaa
.

2.1.7 Exercises.

2.1. Population I ({k1, . . . , kN}) and population II ({`1, . . . , `M}) are, respectively,
populations of male and female gametes of Mendel’s peas. Alice intends to perform a
cross between the two populations. Assume she randomly chooses a pair of gametes,
one from population I and one from II. The outcome space of this experiment is the
set of pairs (ki, `j), where 1 ≤ i ≤ N and 1 ≤ j ≤ M . Assume that all pairs are
equally likely to be chosen.

a) Let Ui be the event that the gamete from population I is ki. Explicitly identify
this event as a subset of the outcome space and determine its probability. Let
Vj be the event the gamete from population II is `j . Show Ui and Vj are
independent.

b) Assume that r of the gametes in population I and s of the gametes in popula-
tion II carry the allele G for green peas and that the remainder carry allele Y .
What is the probability that both gametes selected have genotype G? What
is the probability that one of the selected gametes has genotype G and the
other has genotype Y ?

2.2. If junk DNA (see Chapter 1) has no function, no selective pressure has acted
on it and all possible sequences should be equally likely in a population, because
it mutates randomly as time passes. Thus, a hypothetical model for a randomly
selected piece of junk DNA that is N base pairs long is the uniform distribution on
all DNA sequences of length N . This is equivalent to a random sample of size N
from the population of DNA letters {A, T, G,C}. (This model is a preview of the
independent sites model with equal base probabilities—see Chapter 6.) Assume this
model to do the following problem.

A four bp-long DNA segment is selected at random and sequenced. Find the
probability that the selected sequence contains exactly two adenine (A) bases.

2.3. Randomly select two four-base-long DNA segments x1x2x3x4 and y1y2y3y4 and
align them as follows: x1

y1

x2

y2

x3

y3

x4

y4
.
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a) Assume that the selection of the x-sequence and the selection of the y-sequence
are independent, and that both are random samples of size 4 from the DNA
alphabet. Construct a probability space for the aligned pair of sequences.

b) What is the probability that both the x-sequence and the y-sequence begin
with A? What is the probability that x1 and y1 are equal? What is the
probability that an A is aligned with A exactly twice in the aligned pair of
sequences? What is the probability that x1 = y1, x2 = y2, x3 = y3, x4 = y4?

2.4. Denoting heads by 1 and tails 0, the outcome space of four tosses of a coin is the
set of all sequences (η1, η2, η3, η4) of 0’s and 1’s. The uniform probability measure
on this space models four independent tosses of a fair coin. Let U1 be the event that
the first two tosses are heads, U2 the event that the last two tosses are heads, and
U3 the event the second and third tosses produce one head and one tail in either
order. Show that these events are pairwise independent, but not independent.

2.5. Assume that U1, U2, U3 are independent. Show that U3 and U1 ∩ U2 are
independent and that U3 and U1 ∪ U2 are independent.

2.6. Three coins are in a box. Two are fair and one is loaded; when flipped, the
loaded coin comes up heads with probability 2/3. A coin is chosen by random
sampling from the box and flipped. What is the probability that it comes up heads?
Given that it comes up heads, what is the conditional probability that it is the
loaded coin?

2.7. Probability space model for sampling without replacement. Let S be a popu-
lation of size N and let n ≤ N . The outcome space for a random sample of size n
drawn from S without replacement is the set Ω of sequences (s1, s2, . . . , sn) in which
si ∈ S for all i and in which s1, . . . , sn are all different. The probability model for
random sampling without replacement is the uniform probability measure on Ω.

What is the probability of any single sequence in Ω? If k individuals in S bear
the label x and ` ≤ k, what is the probability exactly ` individuals with label x
appear in the sample of size n?

2.2 Random Variables

Suppose you are tossing a coin. Label the outcome of the next toss by the variable X,
setting X =1 if the toss is heads, X =0 if tails. Then X is an example of a random
variable, a variable whose value is not fixed, but random. In general, a variable
Y that takes a random value in a set E is called an E-valued random variable. By
convention, the term random variable by itself, with no explicit mention of E, means
a random variable taking values in a subset of the real numbers. Random variables
that are not real-valued do appear in some applications in this text; for example,
random variables modeling the bases appearing along a DNA sequence take values
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in the DNA alphabet, {A,C, G, T}. It will always be clear from context when a
random variable is not real-valued.

In Section 2.1, we used probability spaces to model random phenomena. By in-
terpreting outcomes as random variables, we could instead construct random vari-
able models. The two approaches are really equivalent. In the random variables
approach, we are just labeling the outcome by X and replacing the outcome space,
Ω, by the set, E , of possible values of X. But random variables are usually the
preferred option. They provide a better framework for mathematical operations on
outcomes, for defining expected values, and for stating limit laws. And it is eas-
ier to use them to model complex phenomena involving many interacting random
components, each described by its own random variable.

In advanced probability theory, random variables are defined as functions on
probability spaces. Thus a random variable assigns to each possible outcome, ω,
some value X(ω), which might represent a special attribute of ω. This viewpoint
may be useful to keep in mind, but is not explicitly used in this text. In stating
random variable models we usually omit any explicit mention of a probability space.
However, it is important to understand the probability space theory outlined in Sec-
tion 2.1; the axioms of probability are used to handle all probability and conditional
probability calculations with random variables.

2.2.1 Discrete Random Variable

A random ,X, taking values in a finite set, E = {s1, . . . , sN}, or a countably infinite
set, E = {s1, s2, . . . }, is said to be discrete. In this case, the function

pX(x)
4
= P (X = x) , x in E . (2.23)

is called the probability mass function of X. Modeling the outcome of a random
experiment as a discrete random variable is equivalent to specifying its probability
mass function. Once this function is given, the additivity properties of probability
determine the outcome of any other event concerning X, because if U is any subset
of E ,

P ({X ∈ U}) =
∑
x∈U

pX(x). (2.24)

(The notation on the right-hand-side means that the sum is taken over all x in U .)
Note in particular that 1 = P(X ∈ E) =

∑
x∈E pX(x).

In general, any function p on a discrete set E that satisfies 0 ≤ p(x) ≤ 1, for each
x ∈ E , and

∑
x∈E p(x) = 1, is called a probability mass function and is a potential

model for an E-valued random variable.

Example 2.2.1. Bernoulli random variables. X is a Bernoulli random variable with
parameter p if X takes values in {0, 1} and

pX(0) = 1− p, pX(1) = p. (2.25)
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For later reference, it is useful to note that the definition (2.25) can be written in
functional form as

pX(s) = ps(1− p)1−s for s in the set {0, 1}. � (2.26)

The Bernoulli random variable is the coin toss random variable. By convention,
the outcome 1 usually stands for head and 0 for tails. It is common also to think
of Bernoulli random variables as modeling trials that can result either in success
(X = 1) or failure (X = 0). In this case the parameter p is the probability of success.
The language of success/failure trials is often used when discussing Bernoulli random
variables.

The term Bernoulli random variable is also used for any random variable taking
on only two possible values, even if these two values differ from 0 and 1. We shall
indicate explicitly when this is the case. Otherwise 0 and 1 are the default values.

Example 2.2.2. Let S be a finite set, which may be thought of as a population.
An S-valued random variable X is said to be uniformly distributed on S if its
probability mass function is pX(s) = 1/|S| for all s ∈ S. Obviously, X then models
a single random sample, as defined in the previous section, in the language of random
variables. �

Usually, we want to analyze the outcomes of several random trials at once; often
they simply represent repetitions of the same experiment. The overall outcome
can then be described as a sequence X1, . . . , Xn of random variables. To keep the
discussion simple, assume they all take values in the same discrete set E . Then the
function,

pX1···Xn(x1, . . . , xn)
4
= P (X1 =x1, . . . , Xn =xn) , x1, . . . , xn ∈ E (2.27)

is called the joint probability mass function of (X1, . . . , Xn). It determines the
probabilities of any event involving X1, . . . , Xn jointly; if V is any subset of E×· · ·×E
(the n-fold product),

P
(
(X1, . . . , Xn) ∈ V

)
=

∑
(x1,...,xn)∈V

pX1···Xn(x1, . . . , xn).

In particular, the probability mass function of each Xi is the so-called, ith marginal
of pX1···Xn :

pXi(x) =
∑

{(x1,...,xn); xi=x}

pX1···Xn(x1, . . . , xn),

where the sum is over all possible sequences in which the ith term is held fixed at
xi = x. For example, when n = 2, pX1(x) =

∑
x2∈E pX1,X2(x, x2).
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A set of random variables X1, . . . , Xn with values in E is said to be independent
if

• the events {X1 ∈ U1}, {X2 ∈ U2}, . . . , {Xn ∈ Un} are independent for every
choice of subsets U1, U2, . . . , Un of E .

This situation occurs very commonly in applied and statistical modeling. When it
does, the joint distribution of X1, . . . , Xn is particularly simple. If x1, . . . , xn are
elements in E , the events {X1 =x1}, . . . , {Xn =xn} are independent, and hence

pX1···Xn(x1, · · · , xn) = P (X1 =x1, . . . , Xn =xn)
= P (X1 =x1) P (X2 =x2) · · ·P (Xn =xn)
= pX1(x1)pX2(x2) · · · pXn(xn) (2.28)

for any choice of x1, . . . , xn in E . In words, the joint probability mass function is
the product of the probability mass functions of the individual random variables.
In fact, this condition characterizes independence.

Theorem 2 The set X1, . . . , Xn of discrete random variables with values in a dis-
crete space E is independent if and only if (2.28) is true for all choices x1, . . . , xn

of values from E.

We know already that independence implies (2.28), so to prove Theorem 2 re-
quires showing the converse. The reader should prove the case n = 2 as an exercise;
once this case n = 2 is understood, the general case can be proved by induction on
n.

Example 2.2.3. Independent Bernoulli random variables. Flip a coin n times and
record the result as the sequence (X1, . . . , Xn), where, as usual, Xi = 1 in the event
of heads and Xi = 0 in the event of tails. Assume the flips are independent and p
is the probability of heads on each flip. Then X1, . . . , Xn are independent Bernoulli
random variables, each with parameter p. Using (2.26) their joint distribution is

P (X1 =s1, . . . , Xn =sn) = ps1(1− p)1−s1 · · · psn(1− p)1−sn

= ps1+···+sn(1− p)n−(s1+···+sn), (2.29)

for any sequence (s1, . . . , sn) of 0’s and 1’s. �

Examples, such as the last one, featuring independent random variables all shar-
ing a common probability mass function, are so important that they get a special
name.

Definition. The random variables in a finite or infinite sequence are said to be
independent and identically distributed, abbreviated i.i.d., if they are inde-
pendent and if they all have the same probability mass function.
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As an example, suppose S is a finite population, and let X1, . . . , Xn be inde-
pendent, each uniformly distributed on S. It follows from using (2.28) that, every
sequence of (s1, . . . , sn) of possible values of X1, . . . , Xn is equally likely. Therefore,
X1, . . . , Xn is a model, expressed in the language random variables, for a random
sample of size n from S, as defined in Section 2.1. This is a very important point.
I.i.d. sequences of random variables generalize random sampling to possibly non-
uniform distributions. Indeed, many texts adopt the following terminology.

Definition. Let pX be a probability mass function on a discrete set S. A random
sample of size n from distribution pX is a sequence X1, . . . , Xn of independent
random variables, each having probability mass function pX .

To avoid confusion with random sampling as we have originally defined it, that is,
with respect to a uniform measure, we shall generally stick to the i.i.d. terminology
when pX is not uniform.

Example 2.2.4. I.i.d. site model for DNA. Let X1, . . . , Xn denote the successive
bases appearing in a sequence of randomly selected DNA. The i.i.d. site model
assumes that X1, . . . , Xn are independent, each with the same distribution given by
the parameters.

pA = P(Xi =A), pC = P(Xi =C), pG = P(Xi =G), pC = P(Xi =T ).

The i.i.d. site model with equal base probabilities imposes the additional as-
sumption that each Xi is uniformly distributed on {A,G,C, T}, that is, pA = pC =
pG = pT = 1/4. This latter model is the same as a random sample of size n from
the DNA alphabet. It is the random variable version of probability space model for
junk DNA introduced in Exercise 2.2. �

2.2.2 Basic discrete random variables

We have already defined discrete Bernoulli and discrete uniform random variables.
There are several other important types repeatedly used in probabilistic modeling.

Binomial random variables. Let n be a positive integer and let p be a number in
[0, 1]. A random variable Y has the binomial distribution with parameters n, p
if Y takes values in the set of integers {0, 1, . . . , n} and has the probability mass
function

p(k) =
(

n

k

)
pk(1− p)n−k, for k in {0, 1, . . . , n}. (2.30)

The binomial distribution is the probability model for the number of successes in
n independent trials, where the probability of success in each trial is p. To see this,
let X1, X2, . . . , Xn be i.i.d. Bernoulli random variables with p = P(Xi =1); then, the
event Xi =1 represents a success on trial i, and the sum

∑n
1 Xi counts the number
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of successes. If (s1, . . . , sn) is a sequence of 0’s and 1’s in which 1 appears exactly k
times, then we know from (2.29) that

P
(
(X1, . . . , Xn)=(s1, . . . , sn)

)
= pk(1− p)n−k

There are
(
n
k

)
such sequences, because each such sequence corresponds to a choice

of k positions among n at which 1 appears. Thus

P
( n∑

1

Xi =k
)

=
(

n

k

)
pk(1−p)k.

Geometric random variables. A random variable Y has the geometric distribu-
tion with parameter p, where 0 < p < 1, if the possible values of Y are the positive
integers {1, 2, . . . }, and

P (Y = k) = (1− p)k−1 p k = 1, 2, · · · (2.31)

Like the binomial random variable, the geometric random variable has an inter-
pretation in terms of success/failure trials or coin tossing. Let X1, X2, . . . be an
infinite sequence of independent Bernoulli random variables, each with parameter
p. The geometric random variable with parameter p models the time of the first
success in such a sequence. Indeed, the first success occurs in trial k if and only
if X1 = 0, X2 = 0, . . . , Xk−1 = 0, Xk = 1. By independence, this occurs with
probability

P (X1 = 0) · · ·P (Xk−1 = 0) · P (Xk = 1) = (1− p)k−1p,

which is exactly the expression in (2.31).
The Bernoulli trial interpretation of geometric random variables can simplify

calculations. Suppose we want to compute P(Y >j) for a geometric random variable.
This probability is the infinite sum

∑∞
k=j+1 P(Y = k) =

∑∞
k=j+1(1 − p)k−1p. But

Y > j is equivalent to the event that there are no successes in the first j independent
Bernoulli trials, and, as the trials are independent and the probability of failure is
1− p,

P(Y > j) = (1− p)j , (2.32)

without having to do a sum. Of course, the sum is not hard to do using the formula
for summing a geometric series; the reader should show directly that the series∑∞

k=j+1(1− p)k−1p equals (1− p)j .

Geometric random variables have an interesting property, called the memoryless
property, which follows easily from (2.32). If X is geometric with parameter p,

P
(
X > k + j

∣∣X > k
)

=
P(X > k+j)

P(X > k)
=

(1− p)k+j

(1− p)j
= (1− p)j = P(X > j) (2.33)
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To understand what this says, imagine repeatedly playing independent games, each
of which you win with probability p and lose with probability 1−p. Let X be the
first trial which you win; it is a geometric random variable. Now suppose you have
played k times without success (X > k), and you want to know the conditional
probability of waiting at least j additional trials before you win. Property (2.33)
says that the X has no memory of the record of losses; the conditional probability
of waiting an additional j trials for a success, given that you have lost the first k
trials, is the same the probability of waiting for at least j trials in a game that starts
from scratch. This may sound odd at first, but it is an immediate consequence of
the independence of the plays.

Remark. Some authors define the geometric random variable to take values in the
natural numbers 0, 1, 2, . . . with probability mass function P(X = k) = (1 − p)kp,
k ≥ 0.

Poisson random variables. A random variable Z has the Poisson random distri-
bution with parameter λ > 0, if the possible values of Z are the natural numbers
0, 1, 2, . . . and

P (Z =k) =
λk

k!
e−λ, k = 0, 1, 2, . . . (2.34)

Poisson random variables arise often in applications as limits of binomials, when the
number of trials is large but the probability of success per trial is small. This will
be explained in Chapter 5.

Multinomial distributions. We start with an example. A box contains marbles of
three colors, red, green, and blue. Let p1 be the probability of drawing a red, p2 the
probability of drawing a green, and p3 the probability of drawing a blue. Of course,
p1 + p2 + p3 = 1. Sample the box n times with replacement, assuming all samples
are independent of one another, and let Y1 be the number of red marbles, Y2 the
number of greens, and Y3 the number of blues in the sample. The random variables
Y1, Y2, Y3 each have a binomial distribution, but they are not independent—indeed,
they must satisfy Y1 + Y2 + Y3 = n—and so we cannot use (2.28) to compute their
joint distribution. However the individual draws are independent. Let the result Xi

of draw i be r, g, or b, according to the color of the marble drawn. If (s1, . . . , sn)
is a specific sequence consisting of letters from the set {r, b, y}, and if this sequence
contains k1 letter r’s, k2 letter g’s, and k3 letter b’s,

P
(
(X1, . . . , Xn)=((s1, . . . , sn)

)
= P(X1 =s1) · · ·P(Xn =sn) = pk1

1 pk2
2 pk3

3 . (2.35)

On the other hand, there are a total of
n!

k1!k2!k3!
different sequences of sequences of

length n with k1 red, k2 green, and k3 blue marbles. Thus,

P (Y1 =k1, Y2 =k2, Y3 =k3) =
n!

k1!k2!k3!
pk1
1 pk2

2 pk3
3 , (2.36)
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for any non-negative integers k1, k2, k3 such that k1 + k2 + k3 = n.
The general multinomial distribution is defined by a generalization of formula

(2.36). To state it, recall the general notation,(
n

k1 · · · kr

)
4
=

n!
k1! · · · kr!

.

Fix two positive integers n and r with 0 < r < n. Suppose that for each index
i, 1 ≤ i ≤ r, a probability pi is given satisfying 0 < pi < 1, and assume also
that p1 + · · · + pn = 1. The random vector Z = (Y1, · · · , Yr) is said to have the
multinomial distribution with parameters (n, r, p1, . . . , pr) if

P (Y1 =k1, . . . , Yr =kr) =
(

n

k1 · · · kr

)
pk1
1 · · · pkr

r , (2.37)

for any sequence of non-negative integers k1, . . . , kr such that k1 + · · ·+ kr = n.
The interpretation of the multinomial distribution is just a generalization of

the experiment with three marbles. Suppose a random experiment with r possible
outcomes 1, . . . , r is repeated independently n times. If, for each i, 1 ≤ i ≤ r, pi is
the probability that i occurs and Yi equals to the number of times outcome i occurs,
then (Y1, . . . , Yr) has the multinomial distribution with parameters (n, r, p1, . . . , pr).

2.2.3 Continuous random variables.

A function f defined on the real numbers is called a probability density function if
f(x) ≥ 0 for all x, and ∫ ∞

−∞
f(x) dx = P(X < ∞) = 1. (2.38)

Given such an f , we say that X is a continuous random variable with probability
density f if

P(a ≤ X ≤ b) =
∫ b

a
f(x) dx, for any a ≤ b. (2.39)

If X is a continuous random variable, we often write fX to denote its density. Mod-
eling a continuous random variable means specifying its probability density function.

Using principle (2.4) about limits of increasing events, we can extend (2.39) to
the case in which either of a or b is infinite. Thus,

P(X ≤ b) = lim
a↓−∞

P(a ≤ X ≤ b) = lim
a↓−∞

∫ b

a
fX(x) dx =

∫ b

−∞
fX(x) dx (2.40)

Similarly,

P(X ≥ a) =
∫ ∞

a
fX(x) dx (2.41)
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Taking b →∞ in (2.40) yields P(−∞ < X < ∞) =
∫ ∞

−∞
fX(x) dx = 1, as it should

be, and this is the reason for imposing condition (2.38) in the definition of a prob-
ability density function.

The range of a continuous random variable is truly an uncountable continuum
of values. Indeed, if b is any single point, (2.39) implies P(X =b) =

∫ b
b fX(x) dx = 0.

It follows that if S = {s1, s2, s3, . . . } is any discrete subset of real numbers,

P(X ∈ S) =
∞∑
i=1

P(X =si) = 0

Thus the range of a continuous random variable cannot be reduced to any discrete
set.

Because P(X =c) = 0 for any c if X is a continuous random variable, P(a < X ≤
b), P(a ≤ X < b), and P(a < X < b) are all equal to P(a ≤ X ≤ b) and hence all
these probabilities are described by the basic formula (2.38).

Definite integrals of non-negative functions compute areas under curves. Thus
formula (2.39) says that P(a < X ≤ b ) is the area of the region bounded by
the graph, y = fX(x), of the density function, by the x-axis, and by x = a and
x = b. This viewpoint is helpful in working with continuous random variables and
probability densities. In particular, if dx is interpreted as a ‘small’ positive number,
and fX is continuous in an interval about x,

P(x ≤ X ≤ x + dx) ≈ fX(x) dx,

because the region between y=f(x) and the x-axis from x to x+dx is approximately
a rectangle with height fX(x) and width dx. This is a useful heuristic in applying
intuition developed for discrete random variables to the continuous case. Many
formulas for discrete random variables translate to formulas for continuous random
variables by replacing pX(x) by fX(x) dx and summation by integration.

So far, we have introduced separate concepts, the probability mass function and
the probability density function, to model discrete and continuous random variables.
There is a way to include them both in a common framework. For any random vari-
able, discrete or continuous, define its cumulative (probability) distribution function
(c.d.f.) by

FX(x)
4
= P (X ≤ x) . (2.42)

Knowing FX , one can in principle compute P(X ∈ U) for any set U . For example,
the probability that X falls in the interval (a, b] is

P (a < X ≤ b) = P (X ≤ b)− P (X ≤ a) = FX(b)− Fx(a). (2.43)

The probability that X falls in the union of two disjoint intervals (a, b] ∪ (c, d] is
then P(X ∈ (a, b]) + P(X ∈ (c, d]) = FX(b) − FX(a) + Fx(d) − FX(a), and so on.
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Since (a, b) is the union over all integers n of the intervals (a, b− 1/n],

P(a < X < b) = lim
n→∞

P(a < X ≤ b−1/n) = lim
n→∞

FX(b−1/n)−FX(a) = F (b−)−F (a),

(2.44)
where F (b−) = limx→b− F (x).

For a discrete random variable taking values in the finite or countable set S,
FX(b)− FX(a) =

∑
y∈S,a<y≤b pX(y). In particular, if s ∈ S, and pX(s) > 0, then

0 < pX(s) = P(X =s) = P(X ≤ s)− P(X < s) = FX(s)− FX(s−).

Thus the c.d.f. of X jumps precisely at the points of S and the size of the jump at
any s is the probability that X = s. In between jumps, FX is constant. Thus the
probability mass function of X can be recovered from FX .

If X is a continuous random variable, then FX(x) =
∫ x

−∞
fX(y) dy. The funda-

mental theorem of calculus then implies

F ′
X(x) = fX(x) (2.45)

at any continuity point x of fX(x). Thus, we can also recover the density of a
continuous random variable from its c.d.f.

It is also possible to define cumulative distribution functions which are combi-
nations of both jumps and differentiable parts, or which are continuous, but admit
no probability density. These are rarely encountered in applications.

2.2.4 Basic continuous random variables

The uniform distribution. This is the random variable version of the model
described in Section 2.1.3 for randomly and uniformly selecting a point from an
interval. Here it is defined for an arbitrary interval (α, β), where α < β. A random
variable, X, is said to be uniformly distributed on (α, β) if its density function has
the form

f(x) =

{
1

β−α , if α < x < β;

0, otherwise.

If this is the case, P
(
(X ∈ (α, β)

)
= 1 and X will have no preference as to its

location in (α, β). Indeed, if α ≤ a < b ≤ β,

P(a < X ≤ b) =
∫ b

a

1
β − α

dy =
b− a

β − α
,

and this answer depends only on the length of (a, b), not its position within (α, β).

The exponential distribution. The exponential distribution is a popular model
for waiting times between randomly occurring events. It is the continuous analogue
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of the geometric distribution. A random variable is said to have the exponential
distribution with parameter λ, where λ > 0, if its density is

f(x) =

{
λe−λx, if x > 0;
0, otherwise.

Since the density function is zero for x ≤ 0, an exponentially distributed random
variable can only take positive values. Thus, if X is exponentially distributed with
parameter λ, and if 0 ≤ a < b,

P(a < X ≤ b) =
∫ b

a
λe−λx dx = e−λa − e−λb.

In particular, if a ≥ 0,

P(X > a) =
∫ ∞

a
λe−λx dx = e−λa. (2.46)

Conversely, suppose that P(X > a) = e−λa for a > 0. Then FX(a) = 1−P(X > a) =
1−e−λa. By differentiating both sides and applying (2.45), fX(a) = F ′

X(a) = λe−λa

for a > 0, and so X must be exponential with parameter λ. Thus, (2.46) is an
equivalent characterization of exponential random variables.

Like geometric random variables, exponential random variables have a memory-
less property. Indeed, by (2.46),

P
(
X >t + s

∣∣X > s
)

=
P(X >t + s)

P(X > s)
=

e−λ(t+s)

e−λt
= e−λt. (2.47)

That is, the probability of waiting an additional t units of time, given that you have
been waiting s units already, is the same as the probability of waiting t units of time
starting from time zero.

The normal distribution. A random variable Z is said to be normally dis-
tributed or Gaussian, if it has a probability density of the form

φ(x;µ, σ2) =
1

σ
√

2π
e−(x−µ)2/2σ2 −∞ < x < ∞, (2.48)

Here −∞ < µ < ∞ and σ2 > 0. The parameters µ and σ2 are respectively the mean
and variance of the random variable with density φ(x;µ, σ2); (mean and variance
are reviewed in section 2.3). The factor of σ

√
2π in the denominator of the density

insures that
∫∞
−∞ φ(y;µ, σ2) dy = 1, as required for a probability density function.

Often, we use the shorthand notation, X ∼ N(µ, σ2), to identify X as a normal
random variable with mean m and variance σ2.
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If µ = 0 and σ2 = 1, then Z is said to be a standard normal random variable.
A conventional notation for the density of a standard normal r.v.. is

φ(x) =
1√
2π

e−x2/2,

and a conventional notation for its associated cumulative distribution function is

Φ(z)
4
= P(Z ≤ z) =

∫ z

−∞

1√
2π

e−x2/2 dx.

Unlike the uniform and exponential distributions, Φ(z) admits no closed form ex-
pression in terms of elementary transcendental and algebraic functions. Therefore,
to compute probabilities of the form P(a < Z < b) = Φ(b)− Φ(a), where Z is stan-
dard normal, requires using either tables or a calculator or computer with a built in
normal distribution function.

The importance of the normal distribution function stems from the Central Limit
Theorem, which is stated below in Section 2.4.

Normal random variables have a very important scaling property. If Z is a
standard normal r.v. then σZ + µ ∼ N(µ, σ2). Conversely, if X ∼ N(µ, σ2), then
(X − µ)/σ is standard normal. A proof of this fact follows shortly. First we show
how it can be used to calculate probabilities for any normal random variable from
tables for the standard normal. Suppose, for example, that X is normal with mean
1 and variance 4, and we want to know P(X ≤ 2.5). Towards this end, define
Z = (X−µ)/σ = (X−1)/2. Since the event X ≤ 2.5 is the same as Z ≤ (2.5−1)/2 ,
or, equivalently, Z ≤ .75, and since Z is standard normal, P(X ≤ 2.5) = P(Z ≤
.75) = Φ(.75). Tables for Φ show that Φ(.75) = 0.7734.

The general case is a simple extension of this argument. Let X be normal with
mean µ and variance σ2. For any a < b,

a < X < b if and only if
a− µ

σ
<

X − µ

σ
<

b− µ

σ
.

But (X − µ)/σ is a standard normal r.v. Hence

P (a < X < b) = Φ ((b− µ)/σ)− Φ ((a− µ)/σ) .

To prove Z = (X − µ)/σ is standard normal if X ∼ N(µ, σ2), it is necessary to
show that the density of Z is (2π)−1e−x2/2. But

fZ(x) = F ′
Z(x) =

d

dx
P
(
Z ≤ x

)
=

d

dx
P
(X − µ

σ
≤ x

)
=

d

dx
FX(µ + σ x) = σ F ′

X(µ + σ x).

The last step of this calculation used the chain rule. Now, since X ∼ N(µ, σ2),
F ′

X(y) = fX(y) = (2πσ)−1e−(x−µ)2/σ2
. It follows that

fZ(x) = σ (2πσ)−1e−(µ+σx−µ)2/2σ2
= (2π)−1e−x2/2,
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as required.

The Gamma distribution. A random variable is said to have the gamma dis-
tribution with parameters λ > 0 and r > 0 if its density is

f(x) =

{
Γ−1(r)λrxr−1e−λx, if x > 0;
0, otherwise

where Γ(r) =
∫∞
0 xr−1e−x dx. It can be shown by repeated integration by parts that

Γ(n) = (n − 1)! for positive integers n. Exponential random variables are gamma
random variables with r = 1.

2.2.5 Joint density functions

The notion of continuous random variable has a generalization to the multivariable
case.

Definition. Random variables X, Y are jointly continuous if there is a non-negative
function f(x, y), called the joint probability density of (X, Y ), such that

P (a1 <X≤b1, a2 <Y ≤b2) =
∫ b1

a1

∫ b2

a2

f(x, y) dydx, (2.49)

for any a1 < b1, and a2 < b2.

If (X, Y ) have joint density f , then in fact for a region U in the (x, y)-plane,

P ((X, Y ) ∈ U) =
∫
U

∫
f(x, y) dxdy. (2.50)

In a rigorous treatment of probability this rule is derived as a consequence of (2.49).
Here we just state as a fact that it is valid for any region U such that the integral is
well-defined; this requires some technical restrictions on U , which are not necessary
to worry about for applications.

Example 2.2.5. Let (X, Y ) have joint density

f(x, y) =

{
1
2 , if 0 < x < 2 and 0 < y < 1;
0, otherwise

The density is zero except in the rectangle (0, 2) × (0, 1) = {(x, y) : 0 < x < 2, 0 <
y < 1}, so the probability that (X, Y ) falls outside this rectangle is 0.

Let U be the subset of (0, 2)× (0, 1) for which y > x, as in Figure 2.1.
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The area of U is 1/2. Since the f has the constant value 1/2 over U , the double
integral of f over U is the 1/2× area(U) = 1/4. Thus

P(Y > X) =
∫
U

∫
f(x, y) dxdy =

1
4
. �

The definition of joint continuity extends beyond the case of just two random
variables using multiple integrals of higher order; X1, . . . , Xn are jointly continuous
with joint density f if

P ((X1, . . . , Xn) ∈ U) =
∫

U

· ·
∫

f(x1, . . . , xn) dx1 · · · dxn.

Theorem 2 characterizing independence of discrete random variables generalizes
to the continuous case.

Theorem 3 The jointly continuous random variables X1, · · · , Xn are independent
if and only if their joint density function f factors as

f(x1, . . . , xn) = fX1(x1)fX2(x2) · · · fXn(xn) (2.51)

The density function of Example 2.2.5 is equal to f1(x)f2(y), where f1(x) = 1/2
on (0, 2) and 0 elsewhere, and f2(y) = 1 on (0, 1) and 0 elsewhere. The function
f1 is the density of a random variables uniformly distributed on (0, 2) and f2 the
density of a random variable uniformly distributed on (0, 1). Hence X and Y in
Example 2.2.5 are independent random variables, X being uniformly distributed on
(0, 2) and Y on (0, 1).
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2.2.6 Exercises.

Exercises 2.8—2.11 deal with successive generations of a population of 15 individ-
uals. Each individual of generation t + 1 is the child of a parent from generation
t. Reproduction is asexual; essentially, a parent reproduces a copy of itself. These
exercises anticipate the Wright-Fisher model introduced in Chapter 4. Each of the
15 children of generation t + 1 is the child of a randomly selected parent of genera-
tion t, and each of the 15 parents is selected independently. The solutions to these
Exercises make use of the basic discrete random variables introduced in Section 2.2.

2.8. Suppose in the first generation there are 10 individuals of type A and 5 of
type a. Each child inherits the type of its parents. Thus the second generation is
effectively a random sample of size 15 from the first generation.

a) Let Xi equal one if child i is type A and let it equal zero otherwise, for
1 ≤ i ≤ 15. What is the probability that Xi equals one?

b) Let X be the total number of type A individuals in the second generation.
What is the probability distribution of X?

2.9. Again the first generation has 10 type A and 5 type a individuals. This time
however, mutation can occur. An A parent gives birth to an A child with probability
.8 and to an a child with probability .2; an a type gives birth to an a child with
probability .9 and to an A child with probability 0.1. Let Xi and X be defined as
in Exercise 2.1.

a) Compute the probability Xi equals one. (Condition on the type of the parent.)
b) Determine the probability distribution of X.

2.10. a) Find the probability that a given individual leaves no progeny in the next
generation.

b) Find the probability that an individual in the first generation leaves no de-
scendants in the sixth generation.

2.11 Consider a population with 8 individuals of type A, 4 of type B and 3 of type
C. Produce a new population of 15 individuals by random selection as in Exercise
2.8; again, each child inherits the type of its parent. Let XA, XB, and XC denote
the numbers of A, B, and C in the new population. What is the probability that
XA = 5, XB = 6, and XC = 4?

2.12. Let X ∼ N(3, 16). Find the probability that X is greater than or equal to 8.

2.13. Let X be an exponential random variable with parameter λ. For k =
1, 2, 3, . . . , let Y = k if k − 1 < X < k. Show that Y is a geometric random
variable with parameter p = 1− e−λ.



2.3. EXPECTATION 29

2.3 Expectation

In this section all random variables are real-valued.

2.3.1 Expectations; basic definitions

Definition. Let X be a discrete random variable with values in S, and let pX

denote its probability mass function. The expected value of X, also called the mean
of X, is

E[X]
4
=
∑
s∈S

spX(s), (2.52)

if the sum exists. (When S is an infinite set, the sum defining E[X] is an infinite
series and may not converge.) We shall often use µX to denote E[X].

The expected value of X is an average of the possible values X can take on,
where each possible values s is weighted by the probability that X = s. Thus, the
expected value represents the value we expect X to have on average. This is made
more precise in the discussion of the law of large numbers.

The expected value of a continuous random variable is again a weighted average
of its possible values. Following the heuristic discussed in Section 2.2, to arrive at
the appropriate definition we replace the probability mass function pX in formula
(2.52) by fX(x) dx and replace the sum by an integral.

Definition Let X be a continuous random variable. Then,

E[X]
4
=
∫ ∞

−∞
xfX(x) dx, (2.53)

if the integral exists.

Example 2.3.1. Let X be a Bernoulli random variable X with parameter p. Since
pX(0) = 1− p and pX(1) = p, its expectation is

E[X] = 0 · (1− p) + 1 · p = p. (2.54)

This is intuitive; if you win a dollar for heads and win nothing for tails (a nice game
to play!), you expect to earn an average of p dollars per play. �

Example 2.3.2. Probabilities as expectations. Let U be an event. The indicator of
U is the random variable,

1U =

{
1, if U occurs;
0, otherwise
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This is a Bernoulli random variable with p = P(1U =1) = P(U). Hence

E[1U ] = P(U). (2.55)

This trick of representing the probability of U by the expectation of its indicator is
used frequently. �

Example 2.3.3. Let X be uniformly distributed on the interval (0, 1). Since the
density of X equals one on the interval (0, 1) and 0 elsewhere,

E[X] =
∫ ∞

−∞
fX(x) dx =

∫ 1

0
x dx =

1
2
.

The answer makes perfect sense: X shows no preference as to where it lies in (0, 1),
and so its average value should be 1/2. �

Example 2.3.4. Let Y is exponential with parameter λ. An application of integration
by parts to compute the anti-derivative shows,

E[Y ] =
∫ ∞

0
xλeλx dx = −

(
1
λ

+ x

)
e−λx

∣∣∣∞
0

=
1
λ

.

This gives a nice physical interpretation of the meaning of the parameter λ; if Y is
a waiting time, λ is the inverse of the expected time to wait. �

Example 2.3.5. If X ∼ N(µ, σ2), then E[X] = µ. This is easy to see if µ = 0 by the
symmetry of the density function. If µ 6= 0, then X−µ ∼ N(0, σ2), so E[X−µ] = 0,
again showing E[X] = µ. �

The expectations of the other basic discrete and continuous random variables
are listed in a table appearing in Section 2.3.4.

2.3.2 Elementary theory of expectations.

In probability, one repeatedly faces the following problem: given a random variable
X with known distribution and a function g, compute E[g(X)]. To do this directly
from the definition would require first calculating the probability mass function or
probability density of g(X), whichever is appropriate, and then applying (2.52) or
(2.53). But there is an easier way, sometimes called the law of the unconscious
statistician, presumably because it allows one to compute without thinking too
hard.

Theorem 4 a) If X is discrete and E[g(X)] exists,

E[g(X)] =
∑
s∈S

g(s)pX(s). (2.56)
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b) If X is continuous and E[g(X)] exists,

E[g(X)] =
∫ ∞

−∞
g(x)fX(x) dx. (2.57)

c) More generally,

E[h(X1, . . . , Xn)] =
∑
s1∈S

· · ·
∑
sn∈S

h(s1, . . . , sn)pZ(s1, . . . , sn), (2.58)

if pZ is the joint probability mass function of (X1, . . . , Xn), and

E[h(X1, . . . , Xn)] =
∫ ∞

−∞
· · ·
∫ ∞

−∞
h(x1, . . . , xn)f(x1, · · · , xn) dx1 . . . dxn, (2.59)

if f is the joint density function of X1. . . . , Xn.

The law of the unconscious statistician has several important consequences that
are used repeatedly.

Theorem 5 (Linearity of expectation.) Assuming all expectations are defined

E [c1X1 + · · ·+ cnXn] = c1E[X1] + · · ·+ cnE[Xn]. (2.60)

Linearity of expectations is extremely useful. Often, a complicated random
variable can be written as a sum of simpler random variables with easy-to-compute
expectations. Then formula (2.60) can be used to compute its expectation. This
works even if we cannot compute an explicit formula for the density or probability
mass function of the sum.

Example 2.3.6. The mean of a binomial r.v. Let X be binomial with parameters n
and p. According to the definition in (2.52), E[X] =

∑n
0 k
(
n
k

)
pk(1 − p)n−k, which

looks a bit complicated. However, we know that if Y1, . . . , Yn are i.i.d. Bernoulli
with parameter p, then Y1 + · · · + Yn is binomial with parameters n and p. Since
E[Xi] = p for each i,

E[X] = E[Y1] + · · ·+ E[Yn] = np. �

The linearity property extends to integrals of of random variables. For each r

in an interval [a, b], let Y (r) be a random variable, and consider X =
∫ b

a
Y (r) dr.

Then, under some technical conditions,

E[X] =
∫ b

a
E[Y (r)] dr. (2.61)
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The endpoints a or b or both could be infinite in this identity.
A rigorous statement of the conditions under which this holds (it can fail!) is

beyond the level of this text. But as a guideline, if you can make sense of the integral
defining Z and if ∫ b

a

∣∣ E[Y (r)]
∣∣ dr < ∞,

then (2.61) works. It is not hard to understand why (2.61) should be true, at
least from an intuitive viewpoint. An integral is a limit of sums, and because the
expectation of a sum is a sum of expectations, the linearity property of expectation
extends from sums to integrals.

Example 2.3.7. As an application of the interchange of integration and expectation,
we derive a useful alternative formula for the expectation of a positive random
variable. Let Z be a random variable satisfying P(Z ≥ 0) = 1. Recall that if U is an
event, the 1U is the random variable which equals 1 if U occurs and 0, otherwise,
and E[1U ] = P(U)—see Example 2.3.2. Thus

1{x≤Z} =
{

1, if x ≤ Z;
0, if x > Z,

and hence
∫ ∞

0
1{x≤Z} dx =

∫ Z

0
1 dx = Z. Taking expectations on both sides,

E[Z] = E
[ ∫ ∞

0
1{x≤Z} dx

]
=
∫ ∞

0
E
[
1{x≤Z}

]
dx

=
∫ ∞

0
P(Z ≥ x) dx. (2.62)

Using the final expectation to represent or to compute E[Z] is often very useful. �

The next result, which also follows from the law of the unconscious statistician,
is a generalization to expectations of the probability formula P(U1 ∩ · · · ∩ Un) =
P(U1)P(U1) · · ·P(Un) for independent events.

Theorem 6 (Products of independent random variables.) Let X1, . . . , Xn be inde-
pendent random variables. Then

E [g1(X1)g(X2) · · · gn(Xn)] = E[g1(X1)] · · ·E[g(Xn)] (2.63)

whenever E[gi(Xi)] is defined and finite for each i.

We show why this theorem is true in the case n = 2 and X1 and X2 are inde-
pendent and discrete. In this case Theorem 2 says that the joint probability mass



2.3. EXPECTATION 33

function of (X1, X2) is pZ(s1, s2) = pX1(s1)pX2(s2).. Thus, using formula (2.58)

E [g1(X1)g2(X2)] =
∑
s1∈S

∑
s2∈S

g1(s1)g2(s2)pX1(s1)pX2(s2)

=

[∑
s1

g1(s1)pX1(s1)

][∑
s2

g1(s2)pX2(s2)

]
= E[g(X1)]E[g2(X2)]. �

2.3.3 Variance and Covariance

The variance of a random X variable measures the average square distance of X
from its mean µX = E[X]:

Var(X)
4
= E

[
(X − µX)2

]
. (2.64)

The size of the variance indicates how closely the outcomes of repeated, independent
trials of X cluster around its expected value.

There are several basic identities to keep in mind when working with the variance.
First

Var(cX) = E
[
(cX − cµX)2

]
= c2E

[
(X − µX)2

]
= c2Var(X). (2.65)

Second, using linearity of expectations,

Var(X) = E[X2]− 2E[µXX] + E[µ2
x] = E[X2]− 2µXE[X] + µ2

X

= E[X2]− µ2
X . (2.66)

The last two steps in the derivation use the fact that µX is a constant, so that
E[XµX ] = µXE[X] = µ2

X and E[µ2
X ] = µ2

X .

Example 2.3.8. If X is Bernoulli with parameter p, Var(X) = E[X2] − µ2
X =(

02pX(0) + 12pX(1)
)
− p2 = p− p2 = p(1− p). �

Example 2.3.9. If Y ∼ N(µ, σ2), then Var(Y ) = σ2. This can be derived using
moment generating functions—see Section 2.3.4. �

The covariance of two random variables is:

Cov(X, Y )
4
= E [(X − µX)(Y − µY )] . (2.67)

Similarly to (2.66), Cov(X, Y ) = E[XY ]− µXµY .
The covariance of X and Y is defined whenever Var(X) < ∞ and Var(Y ) < ∞.

In this case, the following important inequality is always true:

Cov(X, Y ) ≤
√

Var(X)Var(Y ). (2.68)
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The correlation between X and Y is defined to be

Cor(X, Y ) = Cov(X, Y )/
√

Var(X)Var(Y ).

By (2.68),
∣∣ Cor(X, Y )

∣∣≤ 1 for any X and Y .
Correlation is a measure of the statistical interaction between random variable

For example if Y tends, on average, to be greater than µY when X > µX , then
Cov(X, Y ) > 0 and hence Cor(X, Y ) > 0, whereas if Y tends to be less than µY

when X > µX , Cov(X, Y ) < 0 and Cor(X, Y ) < 0.
Two random variables are uncorrelated if Cov(X, Y ) = 0. It is a very impor-

tant fact that

if X and Y are independent then they are uncorrelated. (2.69)

This is a consequence of the product formula of Theorem 6 for independent random
variables: if X and Y are independent then

Cov(X, Y ) = E [(X − µX)(Y − µy)] = E [X − µX ]E [Y − µY ] = 0,

because E[X − µX ] = µX − µX = 0.
There is also an important formula for the variance of a finite sum of random

variables. Let Y =
∑n

1 Xi. From linearity E[Y ] =
∑n

1 µi, where µi is short hand
for µXi . Then

(Y − µY )2 =

(
n∑
1

Xi − µi

)2

=
n∑
1

(Xi − µi)2 +
∑

1≤i,j≤n,i6=j

(Xi − µi)(Xj − µj).

So taking expectations on both sides, and using the linearity property of expectation
and the definitions of variance and covariance,

Var(
n∑
1

Xi) =
n∑
1

Var(Xi) +
∑

1≤i,j≤n,i6=j

Cov(Xi, Xj). (2.70)

If X1, . . . , Xn are all uncorrelated, which is true if they are independent, it follows
that

Var(
n∑
1

Xi) =
n∑
1

Var(Xi). (2.71)

This is a fundamental formula.

Example 2.3.10. Variance of the binomial. Let X1, . . . , Xn be i.i.d. Bernoulli random
variables, each with probability p of equaling 1. Then we know that

∑n
1 Xi is

binomial with parameters n and p. We have also shown that Var(Xi) = p(1− p) for
a Bernoulli random variable. Therefore the variance of a binomial random variable
with parameters n and p is

Var(
n∑
1

Xi) =
n∑
1

Var(Xi) =
n∑
1

p(1− p) = np(1− p). � (2.72)
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2.3.4 Chebyshev’s inequality and the Law of Large Numbers

Expectations and variances can be used to bound probabilities. The most basic
bound is called Markov’s inequality, which states that if X is a non-negative
random variable and a > 0, then

P (X ≥ a) ≤ E[X]
a

. (2.73)

This is a consequence of two simple facts: first, if Y and Z are two random
variables such that Y ≥ Z with probability one, then E[Z] ≤ E[Y ]; second, if U is
an event P(U) = E[1U ], where 1U is the indicator of U (see Section 2.3.1). Now, if
X is a positive random variable and a > 0,

1{X≥a} ≤
X

a
,

because X ≥ a, when 1{X≥a} = 1. Taking expectations on both side, gives Markov’s
inequality.

Chebyshev’s inequality is a consequence of Markov’s inequality. Let Y be a
random variable with finite mean µ and variance σ2. By applying Markov’s inequal-
ity (Y − µY )2,

P
(∣∣Y − µ

∣∣ ≥ a
)

= P
(
(Y − µ)2 ≥ a2

)
≤

E
[
(Y − µ)2

]
a2

.

Since E[(Y − µ)2] = Var(Y ),

P
(∣∣Y − µ

∣∣ ≥ a
)
≤ Var(Y )

a2
. (2.74)

which is called Chebyshev’s inequality. It gives a quantitative bound on the proba-
bility of deviation of Y from its mean, just in terms of its variance.

Let X1, X2, . . . be uncorrelated random variables all having mean µ and variance
σ2. Chebyshev’s inequality leads directly to the weak law of large numbers for this
case. Let

X̂(n) 4=
1
n

n∑
1

Xi

denote the empirical mean of X1, . . . , Xn. By linearity of expectation, its mean is

E[X̂(n)] =
1
n

n∑
1

E[Xi] =
1
n

n∑
1

µ = µ .

By (2.65) and (2.71), its variance is

Var(X̂(n)) =
1
n2

Var

(
n∑
1

Xi

)
=

1
n2

n∑
1

Var(Xi) =
nσ2

n2
=

σ2

n
.
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Now apply Chebyshev’s inequality:

P
(∣∣X(n) − µ

∣∣ > a
)
≤ Var(X(n))

a2
=

σ2

n
. (2.75)

By letting n →∞ in this inequality, we get the following basic result

Theorem 7 If X1, X2, . . . are uncorrelated random variables with a common mean
µ and a common variance

lim
n→∞

P
(∣∣X(n) − µ

∣∣ > a
)

= 0, (2.76)

.

This theorem is an example of a weak law of large numbers. It is worthwhile
stating its application to binomial random variables separately.

Corollary 1 For each positive integer n, let Y (n) be a binomial random variable
with parameters n and p. Then

lim
n→∞

P

(∣∣∣Y (n)

n
− p
∣∣∣ > a

)
= 0, (2.77)

.

To derive this result, recall from Example 2.3.6 that the expectation of Y (n) is
np and hence the expectation of Y (n)/n is p. Thus from Chebyshev’s theorem, from
the scaling properties of the variance (see equation (2.65)), and from the formula
for the variance of a binomial random variable derived in Example 2.1.10,

P

(∣∣∣Y (n)

n
− p
∣∣∣ > a

)
≤ Var(Y (n)/n)

a2
=

Var(Y (n))
n2a2

=
p(1− p)

na2
.

This tends to zero as n → ∞, proving the claim. This calculation also proves the
inequality stated in Section 2.1.5, formula (2.16), in the presentation of the weak
law of large numbers for random sampling. In that framework, f

(n)
x denoted the

empirical frequency,
N

(n)
x

n
,

where N (n) represents the number of times an individual with label x is drawn in
n independent random samples of a population S. But N (n) is a binomial random
variable with parameters n and p = fx, where fx, the frequency of x in the popu-
lation, is the probability of drawing an individual with label x. By the calculation
we have just done,

P
(∣∣∣∣f (n)

x −fx

∣∣∣∣ > a

)
≤ fx(1− fx)

na2
,

as stated in (2.16).
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2.3.5 The Moment Generating Function.

Definition. The moment generating function of a random variable X is by

MX(t)
4
= E

[
etX
]

defined for all real numbers t such that the expectation is finite.

Notice that MX(0) is always defined, and MX(0) = E[e0] = E[1] = 1. MX(t)
is called the moment generating function because its derivatives at t = 0 can be
used to compute the expectations E[Xn] for any positive integer power of X, and
these expectations are called the moments of X. In order to compute derivatives at
t = 0, assumed that MX(t) is finite for all values t in some interval containing 0.
This assumption is enough to guarantee that MX(t) has derivatives at t = 0 of all
orders. Then, because dn/dtn(etx) = xnetx,

dn

dtn
MX(t) =

dn

dtn
E
[
etX
]

= E

[
dn

dtn
etX

]
= E

[
XnetX

]
.

Setting t = 0 gives
M (n)(0) = E[Xne0] = E[Xn], (2.78)

where M
(n)
X (t) denotes the derivative of order n of MX(t). This calculation required

interchanging expectation and derivation, which requires a justification we do not
give, but is valid under the assumption that MX(t) is finite in an interval about
t = 0.

Example 2.3.11. Exponential random variables The moment generating function of
an exponential random variable with parameter λ is

E[etX ] =
∫ t

0
λetxe−λx dx =

λ

λ− t
, t < λ.

By repeated differentiation,
dn

dtn
λ

λ− t
=

λn!
(λ− t)n+1

. Hence, the nth moment of the

exponential is E[Xn] = n!/λn. �

Moment generating functions are particularly suited for studying sums of inde-
pendent random variables because of Theorem 6. Assume X1, . . . Xn are indepen-
dent, and let Z = X1 + · · ·+Xn. The identity etZ = etX1+···+tXn = etX1etX2 · · · etXn

is elementary. Now apply the product formula of Theorem 6.

MZ(t) = E
[
etX1etX2 · · · etXn

]
= E[etX1 ]E[etX2 ] · · ·E[etXn ] = MX1(t) · · ·MXn(t).

(2.79)
Thus, the moment generating function of a sum of independent random variables
is the product of the moment generating functions of the summands. In particular,
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suppose the random variables X1, . . . , Xn are i.i.d. Then they all have the same
moment generating function MX(t), and so

MZ(t) = E[etX1 ]E[etX2 ] · · ·E[etXn ] = Mn
X(t). (2.80)

Example 2.3.12. Bernoulli and binomial random variables. The moment generating
function of a Bernoulli random variable X with probability p of success is

M(t) = et·0(1−p) + etp = 1− p + pet.

Let Y = X1 + · · ·+Xn, where X1, . . . , Xn are i.i.d. Bernoulli random variables with
probability p of success. Then Y is a binomial random variable with parameters p
and n. Using (2.80) and the m.g.f. of the binomial r.v. , the m.g.f. of Y is

MY (t) =
(
1− p + pet

)n
. (2.81)

Using MY (t) and formula (2.78) for computing moments, it is not hard to recover
the formulas we have already derived for the mean and variance of the binomial
random variable:

E[X] = M ′(0) = n
(
1− p + pet

)n−1
pet
∣∣
t=0

= np, and (2.82)

Var(X) = E[X2]− µ2
X = M ′′(0)− (np)2

= n(n− 1)
(
1− p + pet

)n−2 (pet)2 + n
(
1− p + pet

)n−1
pet − (np)2

∣∣
t=0

.

= np(1− p) � (2.83)

Moment generating functions have another very important property: they char-
acterize the cumulative probability distribution functions of random variables.

Theorem 8 Let X and Y be random variables and assume that there is an interval
(a, b), where a < b, such that MX(t) and MY (t) are finite and equal for all t in (a, b).
Then FX(x) = FY (x) for all x, where FX and FY are the respective cumulative
distribution functions of X and Y . In particular, if X and Y are discrete, they have
the same probability mass function, and if they are continuous, they have the same
probability density function.

Example 2.3.13. Sums of independent normal r.v.’s. The moment generating func-
tion of a normal random variable with mean µ and variance σ2 is M(t) = eµt+σ2t2/2.
We will not demonstrate this here, only apply it as follows. Let X1 be normal with
mean µ1 and variance σ2

1 and let X2 be normal with mean µ2 and variance σ2
2.

Suppose in addition that they are independent. Then, according to Theorem 6, the
moment generating function of X1 + X2 is

MX1+X2(t) = MX1(t)MX2(t) = eµ1t+σ2
1t2/2eµ1t+σ2

1t2/2 = e(µ1+µ2)t+(σ2
1+σ2

2)t2/2.
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However, the last expression is the moment generating function of a normal random
variable with mean µ1 + µ2 and variance σ2

1 + σ2
2. Thus, by Theorem 8, X1 + X2

must be normal with this mean and variance. �

The last example illustrates a special case of a very important theorem.

Theorem 9 If X1, . . . , Xn are independent normal random variables, then
∑n

1 Xi

is normal with mean
∑n

1 µXi and variance
∑n

1 Var(Xi).

The following table summarizes the means, variances, and moment generating
functions of the basic random variables.

Table of means, variances, and moment generating functions.

Distribution Mean Variance M.g.f.

Bernoulli 0-1(p) p p(1− p) 1− p + pet

Binomial(n, p) np np(1− p)
(
1−p+ pet

)n
Poisson(λ) λ λ e−λ+λet

Geometric(p)
1
p

1−p

p2

pet

1−(1−p)et

Uniform(α, β)
α + β

2
(β − α)2

12
etβ − etα

t(β − α)

Exponential(λ)
1
λ

1
λ2

λ

λ− t

Normal(µ, σ2) µ σ2 eµt+σ2t2/2

Gamma(λ, r)
r

λ

r

λ2

λr

(λ− t)r

2.3.6 Conditional Distributions and Conditional Expectations

Let X and Y be two discrete random variables. The conditional probability
mass function of X given Y = y is the function

pX|Y (x|y)
4
= P(X =x

∣∣Y =y), where x ranges over the possible values of X.



40 CHAPTER 2. PROBABILITY THEORY

The conditional expectation of X given Y = y is

E[X
∣∣Y =y]

4
=
∑

x

xpX|Y (x|y).

The concepts are generalized to continuous random variables by replacing proba-
bility mass functions by probability densities. If X and Y are jointly continuous
random variables with joint density f(X,Y ), then the conditional density of X
given Y = y is

fX|Y (x|y)
4
=

{
f(X,Y )(x,y)

fY (y) , if fY (y) > 0;
0, if fY (y) = 0;

here fY (y) is the density of Y . The conditional expectation of X given Y = y is

E[X
∣∣Y =y]

4
=
∫ ∞

−∞
xfX|Y (x|y) dx.

The law of the unconscious statistician—see Theorem 4—holds for conditional
expectations. In the discrete and continuous cases, respectively,

E[g(X)
∣∣Y =y] =

∑
x

g(x)pX|Y (x|y) and E[g(X)
∣∣Y =y] =

∫ ∞

−∞
g(x)fX|Y (x|y) dx.

The rule of total probabilities generalizes to expectations and provides a very
useful tool for computation.

Theorem 10 For discrete and continuous random variables, respectively,

E[g(X)] =
∑

y

E[g(X)
∣∣Y =y]pY (y) (2.84)

E[g(X)] =
∫ ∞

−∞
E[g(X)

∣∣Y =y]fY (y) dy. (2.85)

This result is particular useful if a problem is defined directly in terms of condi-
tional distributions.

Example 2.3.14. Assume that X and Y are such that Y is exponential with param-
eter λ and for every y > 0, the conditional distribution of X given Y = y is that
of a random variable uniformly distributed on (0, y). This is another way of saying
that f(X,Y )(x|y) = 1/y if 0 < x < y, and is 0 otherwise. Find E[X].

The mean of a random variable uniformly distributed on (0, y) is y/2. Hence,
we find easily that E[X|Y =y] = y/2. Thus, using (2.85),

E[X] =
∫ ∞

0
E[X

∣∣Y =y]λe−λy dy =
∫ ∞

0

y

2
e−λy dy =

1
2λ

.

Notice that the last integral is just one-half the expected value of Y . �
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We will explain formula (2.85); formula (2.84) follows from a similar, but even
easier argument. Using first the definition of the conditional expectation and then
the definition of conditional density,∫ ∞

−∞
E[g(X)

∣∣Y =y]fY (y) dy =
∫ ∞

−∞

∫ ∞

−∞
g(x)fX|Y (x|y) dx fY (y) dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)

f(x, y)
fY (y)

dx fY (y) dy

=
∫ ∞

−∞

∫ ∞

−∞
g(x)f(x, y) dx dy

= E[g(X)].

There is a useful an intuitive interpretation of this formula. Notice that the
conditional expectation E[g(X)|Y =y] defines a function of y. Let E[g(X)|Y ] denote
this function evaluated at Y , so it is a random variable. This is subtle, and it
helps to consider an example. For instance in Example 2.3.14, X and Y were
random variables such that E[X|Y = y] = y/2. Thus, in this case, E[X|Y ] = Y/2.
This is a random variable, whose value is the conditional expectation of X given
whatever value Y takes on. In general, E[g(X)|Y ] = h(Y ) where h(y) is defined as
h(y) = E[X|Y =y]. We claim then that both (2.85) and (2.84) are equivalent to

E[g(X)] = E
[
E[X|Y ]

]
. (2.86)

We show this for continuous random variables. Letting h(y) = E[X|Y =y],

E
[
E[X|Y ]

]
= E[h(Y )] =

∫ ∞

−∞
h(y)fY (y) dy =

∫ ∞

−∞
E[X|Y =y]fY (y) dy = E[X],

where the last equality is a consequence of (2.85).
It is also possible to apply conditioning the the calculation of variance. The

conditional variance of X given Y = y is defined as

Var(X|Y =y) = E[X2|Y =y]− (E[X|Y =y])2.

which just generalizes the identity, Var(X) = E[X2] − (E[X])2 from expectation
to conditional expectation. In line with the notation described in the previous
paragraph,

Var(X|Y ) = E
[
X2|Y

]
−
(
E[X|Y ]

)2
.

Theorem 11
Var(X) = Var

(
E[X|Y ]

)
+ E

[
Var(X|Y )

]
(2.87)
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This formula decomposes Var(X) into the sum of two terms, the first is the
variance of E[X|Y ] about its mean, E[E[X|Y ]] = E[X], and the second is the mean
value of Var(Y |X). It is not hard to prove this formula. By definition,

Var
(
E[X|Y ]

)
= E

[(
E[X|Y ])2

]
−
(
E
[
E[X|Y ]

])2
= E

[(
E[X|Y ])2

]
−
(
E[X]

)2
,

and

E
[
Var(X|Y )

]
= E

[
E
[
X2|Y

]]
− E

[(
E[X|Y ]

)2] = E[X2]− E
[(

E[X|Y ]
)2]

.

When added, the terms E
[(

E[X|Y ]
)2] cancel and what is left is

Var
(
E[X

∣∣Y ]
)

+ E
[
Var(X|Y )

]
= E[X2]−

(
E[X]

)2 = Var(X).

2.4 The Central Limit Theorem

The Central Limit Theorem explains the importance of the normal distribution.
Let X1, X2, . . . be i.i.d. random variables with mean µ and variance σ2. Our goal
is to understand the probability distribution of the sum

∑n
1 Xi for large n. To do

this we will scale the sum by additive and multiplicative factors to create a random
variable with mean 0 and variance 1. We know that the sum

∑n
1 Xi has mean nµ,

and so
n∑
1

Xi − nµ

has a mean of zero. We also know that Var
(∑n

1 Xi

)
= nσ2. Therefore, if we define

Z(n) 4=
∑n

1 Xi − nµ

σ
√

n
,

we see that E[Z(n)] = 0 and

Var(Z(n)) = E

[(∑n
1 Xi − nµ

σ
√

n

)2
]

=
1

nσ2
E

( n∑
1

Xi − nµ

)2


=
1

nσ2
Var

(
n∑
1

Xi

)
=

1
nσ2

nσ2 = 1.

The Central Limit Theorem states that Z(n) looks more and more like a standard
normal r.v. as n → ∞. Recall the notation Φ(x) for the cumulative distribution
function of the standard normal, as defined on page 25.



2.4. THE CENTRAL LIMIT THEOREM 43

Theorem 12 The Central Limit Theorem. Suppose X1, X2, . . . are indepen-
dent, identically distributed random variables with common mean µ and variance
σ2. Then for all −∞ ≤ a < b ≤ ∞,

lim
n→∞

P
(

a <

∑n
1 Xi − nµ

σ
√

n
≤ b

)
=
∫ b

a
e−x2/2 dx√

2π
= Φ(b)− Φ(a). (2.88)

This is an amazing theorem because the limit does not depend on the common
distribution of the random variables in the sequence X1, X2, . . . .

Remarks.
1. Let Z be a standard normal random variable (mean 0 and variance 1). Then

the statement (2.88) of the Central Limit Theorem is equivalent to

lim
n→∞

P
(

a <

∑n
1 Xi − nµ

σ
√

n
≤ b

)
= P(a < Z ≤ b), for all −∞ ≤ a < b ≤ ∞. (2.89)

While this is an obvious way to rewrite the Central Limit Theorem, it expresses
more directly the idea that

Pn
1 Xi−nµ

σ
√

n
is approximately a standard normal random

variable when n is large.
2. The inequalities in the event {a <

Pn
1 Xi−nµ

σ
√

n
≤ b} appearing in (2.88) are

conventional in the statement of the Central Limit Theorem, but do not actually
matter. It can be shown that if (2.88) is true, then

P
(

a <

∑n
1 Xi − nµ

σ
√

n
< b

)
, P

(
a ≤

∑n
1 Xi − nµ

σ
√

n
< b

)
, and P

(
a <≤

∑n
1 Xi − nµ

σ
√

n
≤ b

)
all have the same limit Φ(b)− Φ(a). It can also be shown that (2.88) implies

lim
n→∞

E
[
f
(∑n

1 Xi − nµ

σ
√

n

)]
= E[f(Z)]

for any bounded and continuous function f , where Z is a standard normal random
variable. We will not prove these claims, but they are important to know.

Historically, the Central Limit Theorem was first proved for binomial random
variables. For each n, let Yn be binomial with parameters n and p. Let X1, X2, . . .
be i.i.d. Bernoulli random variables with parameter p. Then we know that for each
n, the sum

∑n
1 Xi is binomial with parameters n and p. Thus,

P

(
a <

Yn − np√
np(1−p)

≤ b

)
= P

(
a <

∑n
1 Xi − np√
np(1−p)

≤ b

)
.

By applying the Central Limit Theorem to the right-hand side, we obtain the fol-
lowing result.
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Theorem 13 (DeMoivre-Laplace CLT) For each integer n, let Yn be a binomial
random variable with parameters n and p, p being fixed. Then for any −∞ ≤ a <
b ≤ ∞.

lim
n→∞

P

(
a <

Yn − np√
np(1−p)

≤ b

)
=
∫ b

a
e−x2/2 dx√

2π
= P(a < Z ≤ b), (2.90)

where Z is standard normal.

Paraphrasing Theorem 13, (Yn−np)/
√

np(1−p) is approximately standard nor-
mal for large n. The question is how large should n be for the approximation to
be accurate? The general rule of thumb is that the approximation is accurate if
np(1−p) ≥ 10.

Example 2.3.15 Let X be binomial with p = .5 and n = 50. Find an approximate
value of P(22 ≤ X ≤ 28).

Since X is discrete, and the central limit theorem approximates it by a continuous
random variable, the approximation will be more accurate if we use the following
continuity correction of the limits:

P(22 ≤ X ≤ 28) = P(21.5 < X < 28.5).

From Theorem 13 with n = 50 and p = .5, we have that (X − 25)/
√

12.5 is
approximately standard normal. Thus

P(21.5 < X < 28.5) = P
(

21.5− 25√
12.5

<
X − 25√

12.5
<

28.5− 25√
12.5

)
≈ Φ(.99)− Φ(−.99),

Using tables, this turns out to be 0.6778. �

2.5 Continuous Limits of Discrete Random Variables
and Approximation

Mathematical descriptions of real physical processes are almost never exact, and this
is true for probabilistic as well as deterministic models. The probability distribution
of the random outcome, X, of a physical variable will generally not take a simple
form, and it could be influenced by small factors whose properties are not understood
precisely. Rather, science aims at a good approximate model, X̃, which can be
characterized exactly, and which captures the essential features of X in the sense
that P(X̃ ∈ A) ≈ P(X ∈ A) for a wide class of events A. There are a variety of
ways to make the notion of approximate model precise, but it suffices for now just to
convey the idea: X̃ approximates X in distribution if the error made in computing
probabilities using X̃ in place of X is small.
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One approximation common in both applied probability and statistics, is to
model a discrete random variable by one that is continuous. At first this may
seem like a nonsensical thing to do, given the qualitative difference between the two
types. But in fact, we have seen two instances already in this chapter. The first was
discussed in Section 2.1.3 in the framework of probability space models, but it can be
reformulated readily in terms of random variables. Consider a measurement, made
to an accuracy of n decimal places, that results in a random number in the interval
[0, 1). Call this measurement Xn. If, as in the last paragraph of Section 2.1.3,
each possible value of Xn has an equal probability, then Xn is uniformly distributed
over the finite set of decimal numbers 0.ξ1 . . . ξn between 0 and 1. There are 10n

such numbers evenly distributed over [0, 1), and they are closely spaced, even for
moderate values of n. Thus, it is not surprising that Xn should be well approximated
by a random variable U that is uniformly distributed over (0, 1). In fact it can be
shown that for any 0 ≤ a < b ≤ 1, P(a < Xn < b) and P(a < U < b) = b − a differ
by at most 2 · 10−n. It follows that

lim
n→∞

P(a < Xn ≤ b) = P (a < U ≤ b), for any −∞ ≤ a < b ≤ ∞. (2.91)

This statement adds even more insight: in a sense, the approximation becomes exact
in the limit as n → ∞. The connection between U and Xn goes beyond this limit
statement. For any given n, imagine observing U and then rounding it down to
the nearest decimal number of the form 0.ξ1 . . . ξn; call the result Un. Then Un has
exactly the same distribution as Xn.

The second example is the DeMoivre-Laplace Central Limit Theorem stated as
Theorem 13. In this theorem, Yn, being a binomial random variable, is discrete, and
hence so is

Zn :=
Yn − np√
np(1− p)

.

Since Yn takes integer values, the distance between successive values of Zn are a
distance 1/

√
np(1− p) apart, running from a minimum of

√
n
√

p/(1− p), when
Yn = 0, to a maximum of

√
n
√

(1− p)/p, when Yn = n. So, as with in the previous
example, the values of Zn are becoming more and more closely spaced as n increases.
The Central Limit Theorem says that limn→∞ P(a < Zn ≤ b) = P(a < Z ≤ b) for
all a < b, where Z is standard normal, implying that Zn is well-approximated in
distribution by Z when n is large.

The use of a continuous distribution to approximate a discrete one is an impor-
tant step in several of the major applications in this text. In this section, we explain
the general nature of this approximation in greater detail, so that the reader has a
better grasp on how it works, both quantitatively and qualitatively. The examples
above indicate the usual framework for this discussion. There will be a family of
discrete models, {Xn; n ≥ 1} indexed by a parameter n. As n becomes larger, the
values of Xn become more and more closely spaced and the probabilities that Xn
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takes on any specific value tend to 0 as n →∞; these are essentially necessary condi-
tions for approximation by a continuous random variable. The approximation itself
will be expressed as a limit statement, as in (2.91) or the Central Limit Theorem:
for some continuous random variable V ,

lim
n→∞

P
(
a < Xn ≤ b

)
= P

(
a < V ≤ b

)
for all −∞ ≤ a < b ≤ ∞.

When this is true, we say that Xn converges in distribution to V ; this is standard
terminology in probability theory. In applications, convergence in distribution is
used to justify using V as an approximate model for Xn, when n is reasonably
large.

2.6 Notes

The material in this chapter is standard and may be found, mostly, in any under-
graduate probability text. A standard and very good text is that of Sheldon M.
Ross, A First Course in Probability, Prentice-Hall. There are many editions of this
text; any of them is a good reference.


