
MATH 338: Homework #8

Due: Thursday, April 25, 2019

Solve the below problems related to Markov chains, the Luria-Delbrück distri-
bution, and exponential random variables.

1. This is just the last problem from Exam 2.

Consider a population of individuals able to produce offspring of the same
kind, so that each individual, by the end of its lifetime, will have produced
j new offspring with probability pj for j = 0, 1, 2, . . ., independently of the
numbers produced by the other individuals. Clearly then,

0 ≤ pj ≤ 1,
∞∑
j=0

pj = 1.

Suppose that there exists one individual in the initial generation
(generation 0), and let X(t) denote the size of the tth generation, for t =
0, 1, 2, . . .. More formally,

X(t) =

X(t−1)∑
i=1

Zi

where Zi denotes the number of offspring of the ith individual of the (t−1)st

generation, and the Zi have distribution described by the previous pj.

(a) Prove that the above construction forms a Markov chain. Describe the
state space.

(b) Find an expression for the transition probability pi,0. That is,

pi,0 = P(X(t+ 1) = 0 |X(t) = i).

(c) Assume p0 > 0. Using your result from part (b), determine which states
are transient and which are recurrent. Note that p0 > 0 is important,
and you should provide justification.



(d) Denote the mean and variance of each Zi as follows:

µ := E[Zi] =
∞∑
j=0

jpj

σ2 := Var(Zi) =
∞∑
j=0

(j − µ)2pj.

Determine a recurrence relation between E[X(t+ 1)] and E[X(t)].
Hint: First determine E[X(t + 1) |X(t) = i], and use the law of total
expectation.

(e) Solve the recurrence relation in part (d) for E[X(t)].

(f) Assume that µ < 1. Show that the species eventually dies out, i.e. that

π0 := lim
t→∞

P(X(t) = 0 |X(0) = 1) = 1.

2. Problem 4.5.2 in the textbook (page 52).

3. In the derivation of the Luria-Delbrück mean and variance for the sponta-
neous mutation (SM) hypothesis, we assumed that the resistant bacterium
grew at the same rate as their sensitive counterparts. In general, this is
probably not a realistic assumption, since cells normally need to “give up”
something to become resistant. Assume now that resistant cells divide
half as often as the sensitive variants. Under this assumption (and ev-
erything else as in class), derive an expression for

E(Z)

Var(Z)
,

where Z is the number of mutants when the phage is applied. Please
provide the FULL derivation.

4. Suppose that {Xi}Ni=1 are independent random variables, and define

Y =
N∑
i=1

Xi.

Find an expression for the cumulant generating function of Y in terms of
the cumulant generating functions of the Xi.



Hint: It may be useful to first work in terms of the moment-generating
function

φ(s) = E(esX),

and to use the relation

ψ(s) = log(φ(s)).

5. The exponential distribution is fundamentally important for continuous-
time stochastic processes, as it is the only memoryless continuous distribu-
tion. That is, if T is exponentially distributed, it satisfies the relationship

P(T > t+ s) = P(T > t)P(T > s). (1)

(a) Verify equation (1) for any exponential distribution.

(b) The functional relationship in (1) takes the form

G(t+ s) = G(t)G(s) (2)

We now show that the only continuous (actually, you only need right-
continuity) solution of (2) is an exponential. Show first that for any
positive integer n,

G(n) = G(1)n.

(c) Similarly to (b), conclude the same for all negative integers.

(d) Show that for any positive integer n,

G

(
1

n

)
= G(1)

1
n .

(e) Show that your previous results imply that for any rational number
x,

G(x) = G(1)x.

(f) The last part requires a bit of mathematical machinery, so I will just
tell you that continuity and part (e) imply that

G(x) = G(1)x



for all real numbers x. Show that

G(x) = e−λx

for some λ > 0. Find the value of λ, and make sure that you know it is
strictly positive (remember, G should be decreasing, since it represents
G(x) = P(T > x)). This then completes the proof.


