MATH 338: Homework \#5

Due: Thursday, March 14, 2019

Solve the below problems concerning stochastic processes and Markov chains.

1. Consider a three-state (that is, $\mathcal{E}=\{1,2,3\}$) Markov chain with transition probability matrix

$$
\left(\begin{array}{lll}
1 / 4 & 1 / 4 & 1 / 2 \\
1 / 2 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 2 & 1 / 4
\end{array}\right) .
$$

(a) Write down the state transition diagram for this process.
(b) Assume that $\mathbb{P}(X(0)=1)=1$. Find the probability of the following sample path:

$$
\mathbb{P}(X(0)=1, X(1)=2, X(2)=2) .
$$

(c) Again assume that $\mathbb{P}(X(0)=1)=1$. Find the probability of the following sample path:

$$
\mathbb{P}(X(0)=2, X(1)=2, X(2)=2)
$$

(d) Again assume that $\mathbb{P}(X(0)=1)=1$. Find the probability of being at state 1 at time $t=2$:

$$
\mathbb{P}(X(2)=1) .
$$

2. Find transition probabilities for the following Markov chains.
(a) Urn I and Urn II both contain N marbles. Of the $2 N$ marbles, half are white and half are red. At each step, one marble is selected at random from each urn and the marbles are interchanged. $X(t)$ represents the number of white marbles in the first urn at the $t^{\text {th }}$ step.
(b) Now assume Urn I and Urn II contain a total of M marbles. Let the state be the number of marbles in Urn I. At each step, proceed as follows: if the state is k, select Urn I with probability k / M, otherwise select Urn II; then select a marble from Urn I with probability p and from Urn II with probability $q=1-p$, and place the marble in the selected urn.
3. Consider the Wright-Fisher chain with $N=10$. Suppose that $\mathbb{P}(X(0)=$ $2)=1$. Find $\mathbb{P}(X(2)=10)$.
4. Consider the Moran model with $N=10$ and $\mathbb{P}(X(0)=1)=1$. Find $\mathbb{P}(X(3)=0)$ and $\mathbb{P}(X(3)=1)$.
5. Calculate the expected lifetime of an individual in the Moran model.
6. Recall that the simple random takes the form

$$
X(t)=X(0)+\sum_{i=1}^{t} \xi_{i}
$$

where ξ_{i} are independently identically random variables such that

$$
\mathbb{P}\left(\xi_{i}=1\right)=p, \quad \mathbb{P}\left(\xi_{i}=-1\right)=q=1-p .
$$

Derive an expression for the expected value of the position of the random walk at time t (i.e. $\mathbb{E}(X(t)))$. Note that your answer should depend on the initial distribution, time t, and p.
7. Exercise 4.1.7 in Chapter 4 of the online notes (page 20).

