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Abstract

Ovarian cancer has long been one of the most common forms of cancer in women. The main treatment for ovarian cancer comprises a

combination of surgery and chemotherapy. In an effort to improve treatment strategies, a variety of mathematical models have been

developed in the literature. In this paper, we consider a simple mathematical model that incorporates tumor growth as well as the effects

of chemotherapeutic and surgical treatments in ovarian cancer. We consider several growth models and combine them with different cell-

kill hypotheses. Surgery is assumed to eliminate a fixed fraction of tumor cells instantaneously. We discuss how different models predict

the optimal sequencing of chemotherapeutic and surgical treatments. This work has been carried out in the context of ovarian cancer;

however, the results may also be useful for other kind of cancers.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Ovarian cancer is a malignant growth that begins in the
ovaries. It can be divided into three broad subgroups:
epithelial, stromal, and germ cell tumors. Epithelial
ovarian cancer is the most common disease and develops
from tissue on the ovarian surface. Detecting ovarian
cancer is, in general, difficult, because of the lack of
effective screening tests. If the disease is discovered when
confined to the ovaries, surgery alone is curative in more
than 90% of patients; however, in most patients, diagnosis
only occurs after dissemination beyond the ovaries. In
these cases, a combined treatment of surgery and
chemotherapy is necessary.

One of the most important prognostic factors in the
treatment of advanced ovarian cancer is the amount of
residual tumor after the initial surgery (Griffiths, 1975;
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Hacker et al., 1983; Delgado et al., 1984; Bertelsen, 1990;
Hoskins et al., 1994; Bristow et al., 2002). Patients in whom
the diameter of the remaining tumor is no more than
1–2 cm tend to have longer survival times (Hoskins et al.,
1994). Progression-free survival (the length of time from
start of treatment to disease progression) and overall
survival (the length of life after starting treatment) are
improved in all patients who are subsequently treated with
chemotherapy; however, the impact is most pronounced in
those patients who are optimally debulked (Markman
et al., 2001; Muggia et al., 2000; Mutch, 2002; Agarwal and
Kaye, 2003; Rose et al., 2004).
Chemotherapeutic drugs usually destroy cancer cells by

preventing them from growing and dividing rapidly;
unfortunately, those drugs also target normal cells. The
choice of chemotherapies, dosage, and timing are deter-
mined by many factors including patient’s response and the
stage of the ovarian cancer. Standard combination
chemotherapy consists of drugs that contain platinum
agents such as cisplatin and carboplatin, and taxane
compounds such as paclitaxel and cyclophosphamide.
Recent studies have addressed modifications of the

www.elsevier.com/locate/yjtbi
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chemotherapy regimen, see, for example, Hoskins et al.
(2000) and the references therein.

Although, there have been a wide variety of studies
carried out on ovarian cancer, the answers to some key
questions related to the optimal sequencing and scheduling
of chemotherapy and surgery are far from resolved. In a
clinical setting, it has been a long held belief that the
optimal therapeutic strategy is to maximally debulk a
cancerous tumor followed by chemotherapy. Interval
debulking is also deemed appropriate if the initial surgery
is sub-optimal. However, in recent years, there has been a
shift in opinion to up-front neo-adjuvant chemotherapy
(NACT), followed by surgery and then more chemother-
apy (Jacob et al., 1991; Surwit et al., 1996; Vergote et al.,
1998; Schwartz et al., 1999; Kayikcioglu et al., 2001; Kuhn
et al., 2001; Mazzeo et al., 2003; Steed et al., in press).
There is no clear evidence to suggest that this should be the
preferred approach and, in fact, the factors driving this
change are in part pragmatic (lack of availability of surgery
time) and in part clinical (easier to perform surgery if the
diseased tumor bulk is reduced). However, it is far from
clear if this change in sequence is better or worse in terms
of patient outcome. There is currently a large multicenter
randomized clinical trial (EORTC 55971) addressing this
question but the data will not be available in the near
future. Therefore, the development of mathematical
models to address this question would appear to be very
appropriate and timely.

There have been a wide range of mathematical models
on cancer and tumor growth; however, only a few
investigations have been particularly concerned with
ovarian cancer. Recently, Panetta (1997) presented a
mathematical model and used it to study breast and
ovarian cancer treatment with paclitaxel. Using this
mathematical model (Panetta, 1997; Webb, 1992; Panetta
and Adam, 1995), he discussed how varying the treatment
period, drug infusion time, the dose strength, and
proliferating fraction of the cancer mass affect the outcome
of the treatment. Montalenti et al. (1998) simulated cancer-
cell kinetics after drug treatment (in particular, the effects
of cisplatin on ovarian carcinomas). Recently, Marcu et al.
(2005) also studied the biological effects of cisplatin and
simulated the consequence of cisplatin resistance on tumor
control.

Much of the experimental data that exist has been
modeled using purely time-dependent growth laws based
on either exponential or Gompertzian growth. In the
simplest approach, tumor growth is assumed to be
exponential; however, these models are characterized by
the property of unbounded growth (there is no upper
limit). Although exponential growth serves as an appro-
priate model for the early stages of tumor growth, it is
generally the case that the doubling time of a tumor begins
to increase as the tumor grows larger. Gompertzian growth
takes this into account, with tumor size a function of the
time, initial size N0, limiting size N1, and growth rate b
(Laird, 1964; Norton et al., 1976; Norton, 1988; Retsky
et al., 1990). Other most commonly used growth models
are logistic growth, generalized logistic growth (Heitjan,
1991), and power law growth (West et al., 2001; Guiot et
al., 2003; Retsky, 2004); these are discussed in the next
section. On the other hand, several approaches have been
developed for modeling chemotherapeutic induced cell-kill.
One of the original assumptions, referred to as the log-kill
hypothesis, is that cell-kill by many drugs is proportional
to the tumor population (Skipper et al., 1964). This implies
that smaller tumors are more easily eradicated with drugs
than larger tumors. Later, Norton and Simon (1977, 1986)
proposed that the cell-kill is proportional to the growth
rate (e.g., exponential, logistic or Gompertz) of the tumor.
A third hypothesis notes that some chemotherapeutic
drugs must be metabolized by an enzyme before being
activated. This reaction is saturable due to a fixed amount
of enzyme. Thus, Holford and Sheiner (1981) developed
the so-called Emax model which assumes that the cell-kill is
proportional to a saturable function of mass. Recently,
Fister and Panetta (2003) used optimal control techniques
to study these three cell-kill models. They showed that
there are qualitatively different treatment schemes for each
model, in particular, the log-kill model requires less drug
compared to the Norton–Simon model to reduce the
cancer an equivalent amount over the same treatment
interval.
When drugs are given in combination, determining the

effects of each drug can be difficult. However, some of the
chemotherapeutic drugs are given as a single agent, and
thus, to avoid difficulties with drug combinations and to
reduce the number of assumptions and parameters in the
model, we only consider the effects of a single drug agent.
On the other hand, some of the drugs interfere with cell
division processes (G0, a period where cells exist in a
quiescent state, G1, the first growth phase, S, during which
the DNA is replicated, G2, the second growth phase, and
M phase or mitosis). These cell-cycle specific drugs tend to
be very schedule dependent, because the only way to
increase the total cell kill is by extending the duration of
exposure, not by increasing the dose. Hence, it is important
to consider different phases in the mathematical model,
especially the active (proliferating) phase and resting
(quiescent) phase (Panetta, 1997). Our primary aim is to
develop a simple mathematical model that incorporates
tumor growth as well as the effects of chemotherapeutic
and surgical treatments and to study the optimal sequen-
cing of these modes of treatments. Thus, we study a non-
cell-cycle phase specific drug and consider only one
population of tumor cells in the mathematical modeling.
The generalization of the model to a two compartment
model (in order to take into account proliferating and
quiescent phases) is discussed in the conclusion.

2. Mathematical model

A number of mathematical models for tumor growth
have been proposed in the past to describe tumor growth
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kinetics. The more popular models are based on exponen-
tial (generalized) logistic, and Gompertzian growth laws.
The justification for these models mainly depends on how
well they fit the survival curves of the particular tumor
system under consideration. The general form of the
growth model can be written as

dN

dt
¼ f ðNÞ with Nð0Þ ¼ N0, (1)

where f ðNÞ describes the tumor cell growth dynamics. For
exponential growth, the simplest possible growth,
f ðNÞ ¼ kN, where k is the proliferation rate. Exponential
growth is cellular division with a constant dividing time.
The Gompertz model is a modification of exponential
growth, with the addition of a decreasing growth rate over
time. This decelerated growth causes the cancer to
asymptotically approach a limiting size, referred to as its
carrying capacity. Another commonly used growth model,
which incorporates the assumption of limiting cell number,
is the generalized logistic model. We consider a general
form for the function f ðNÞ,

f ðNÞ ¼ a1N � a2Nnþ1. (2)

Clearly, a2 ¼ 0 is equivalent to exponential growth. With
the choice of a1 ¼ b=n and a2 ¼ b=ðnNn

1Þ, where N1 is the
limiting population size of the tumor, we obtain general-
ized logistic growth (n40),

f ðNÞ ¼
bN

n

� �
1�

N

N1

� �n� �
. (3)

The case of n ¼ 1 is the usual logistic growth. One should
also note that for n51, generalized logistic growth reduces
to Gompertzian growth, in which f ðNÞ is given by

f ðNÞ ¼ �bN ln
N

N1
. (4)

Recently, West et al. (2001) proposed a general model
for the ontogenetic growth of living organisms using basic
cellular mechanisms. They showed that the same universal
exponential curve fits the ontogenetic growth data on
mammals, birds, fish, and molloscs, providing masses and
growth times for the different organisms are properly
rescaled. Guiot et al. (2003) extended this model to the
growth of solid malignant tumors and compared it to a
variety of data. As pointed out by Retsky (2004), it is
generally difficult to prove that tumor growth follows a
‘‘universal law’’. Mathematically, their model is equivalent
to f ðNÞ ¼ aNp � bN. Requiring that the limiting size of the
tumor is N1, we obtain b ¼ aNp�1

1 , thus (po1):

dN

dt
¼ aNp 1�

N

N1

� �1�p
" #

. (5)

Guiot et al. (2003) used the above growth model with p ¼ 3
4

to fit the data. One can show that Eq. (5) reduces to
Gompertzian growth for p close to one and a ¼ b=ð1� pÞ.

We now proceed by considering the effects of surgery
and chemotherapy. We consider the case of a single, non-
cell-cycle specific, drug agent. As discussed earlier, different
cell-kill models have been proposed to study the effects of
chemotherapy on tumor growth. In the log-kill hypothesis,
it is assumed that cell-kill is proportional to tumor
population (Skipper et al., 1964). This means that a given
dose of chemotherapy kills a fixed fraction of the remaining
cells. The Norton and Simon (NS) model (Norton and
Simon, 1997, 1986) considers the cell-kill to be propor-
tional to the growth rate. A third popular model is the Emax

model, where cell-kill is proportional to a saturable
function of Michaelis–Menton form Holford and Sheiner
(1981). Surgery, on the other hand, is instantaneous and
kills a fixed fraction expð�ksÞ of the tumor cells (Bell and
Wien, 2001, 2002), where ks is related to the fraction of the
removed tumor cells (smaller values of ks correspond to
cases where more cells go undetected at the time of
surgery). Thus, the number of cells at time t is given by the
following differential equation:

dN

dt
¼ f ðNÞ � Gðt;NÞ � ksIðt ¼ tsurgeryÞN; ð6Þ

where Iðt ¼ tsurgeryÞ is the indicator function; it is one if
t ¼ tsurgery and zero otherwise. The function Gðt;NÞ
describes the pharmacokinetic and pharmacodynamic
effects of the drug on the system. In this study, we consider
three cell-kill strategies as the following:

Gðt;NÞ ¼

cðtÞN log-kill;

cðtÞf ðNÞ NS model;

cðtÞN=ðN þ dÞ Emax model:

8><
>: (7)

The function cðtÞ is proportional to the drug concentration,
cðtÞ ¼ 0 implies no drug effect is present and cðtÞ40 gives
the amount or strength of the drug effect. In general, the
function cðtÞ can take many different forms; one popular
choice is the on–off type, where the drug is active or
inactive (Panetta, 1997).

3. Results

In this section, we consider different growth models
combined with the cell-kill hypothesis given in the previous
section, and study the optimal sequencing of chemotherapy
and surgery. Thus, we consider two schedules: (a)
chemotherapy and surgery (CS), and (b) surgery and
chemotherapy (SC), see Fig. 1.

3.1. Log-kill model

We first consider Gompertzian growth and the log-kill
model. Thus, the governing ordinary differential equation
is given by

dN

dt
¼ �bN ln

N

N1
� cðtÞN � ksIðt ¼ tsurgeryÞN: ð8Þ

(i) Sequencing of CS, see Fig. 1a: For tot0, where
t0 ¼ tchemo, there is no chemotherapy or surgery, so NðtÞ is
simply the solution of the Gompertz growth model. At
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Fig. 1. A schematic diagram of sequences of treatments: (a) chemotherapy

and surgery and (b) surgery and chemotherapy.
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t ¼ t0, we obtain

Nðt0Þ ¼ N1
N0

N1

� �expð�bt0Þ

. (9)

For t0ototf , where chemotherapy is applied, the solution
of Eq. (8) for a general cðtÞ, and with the above initial
condition at t0, is

NðtÞ ¼ N1 exp e�bt c1ðtÞ þ ln
N0

N1

� �� �
, (10)

where c1ðtÞ is defined as

c1ðtÞ ¼ �

Z t

t0

cðtÞ ebt dt. (11)

Assuming that surgery at tf ¼ tsurgery kills expð�ksÞ of the
cells, we obtain

NCS

N1
¼ exp e�btf c1ðtf Þ þ ln

N0

N1

� �
� ks

� �
. (12)

(ii) Sequencing of SC, see Fig. 1b: In this case surgery is
performed first, thus after surgery the number of cells at t0
is given by

Nðt0Þ ¼ N1e
�ks

N0

N1

� �expð�bt0Þ

. (13)
For t0ototf , where chemotherapy is given, the solution
(at t ¼ tf ) of Eq. (8) with the above initial condition is

NSC

N1
¼ exp e�btf c1ðtf Þ þ ln

N0

N1
� kse

bt0

� �� �
. (14)

Dividing Eqs. (12) and (14), we obtain

NCSðtf Þ

NSCðtf Þ
¼ expf�ksð1� ebðt0�tf ÞÞg. (15)

This equation indicates that in the Gompertz growth
model, and for a general form of the drug concentration
function, NCSoNSC . This means that sequencing of
chemotherapy followed by surgery is a better strategy than
sequencing surgery followed by chemotherapy.
For generalized logistic growth model, we can perform

similar analytical calculations, assuming that cðtÞ ¼ c0 (i.e.,
where the drug concentration remains constant throughout
the time of chemotherapy). However, the results are more
complicated and we do not present them here although we
arrive at the same conclusion of NCSoNSC for these
models. Clearly, the exponential growth model predicts
NCS ¼ NSC .

3.2. Norton and Simon model

For the NS model, in which the cell-kill is proportional
to the growth rate, combining Eqs. (7) and (6), we have

dN

dt
¼ �bN ln

N

N1
½1� cðtÞ� � ksIðt ¼ tsurgeryÞN. (16)

If we follow the same procedure as the log-kill hypothesis,
for sequencing of CS we obtain

NCS

N1
¼ exp e�btfþc2ðtÞ ln

N0

N1
� ks

� �
, (17)

where c2ðtÞ is given by

c2ðtÞ ¼ b
Z t

t0

cðtÞdt, (18)

and for sequencing of SC,

NSC

N1
¼ exp e�bðtf�t0Þþc2ðtf Þ e�bt0 ln

N0

N1
� ks

� �� �
. (19)

Again, dividing Eqs. (17) and (19) results in

NCSðtf Þ

NSCðtf Þ
¼ expf�ksð1� e�bðtf�t0Þþc2ðtf ÞÞg. (20)

This equation implies that NCSoNSC if
R tf

t0
cðtÞdtotf � t0,

which again implies that sequencing chemotherapy first
followed by surgery is a better strategy. For cðtÞ ¼ c0, the
above condition reduces to c0o1. One should note that the
strength of chemotherapy should be more than one to be
effective (see Eq. (16)); however, as mentioned earlier,
chemotherapy is usually given as an on–off type function.
For example, a patient with ovarian cancer usually receive
6 cycles of chemotherapy every 21 days (Steed et al., in
press), where drug infusion times vary from 1 to 96 h and
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doses range from 75 to 300mg=m2 (Panetta, 1997). Thus,
in a clinical situation, and for a reasonable range of
parameters, the condition

R tf

t0
cðtÞdtotf � t0 is usually

satisfied.
For the generalized logistic growth model, our analytical

calculations (for cðtÞ ¼ c0) predicted the same results that
NCSpNSC for c0o1, where we have equality for expo-
nential growth.

3.3. Emax model

We now consider the Emax model of Eq. (7), for which

dN

dt
¼ f ðNÞ � cðtÞ

N

N þ d
� ksIðt ¼ tsurgeryÞN. (21)

In this case, in the absence of an analytical solution for the
equation, we performed numerical integration. As might be
expected, we obtained different results for the optimal
sequence, for all the growth models (including exponential
growth), by varying the parameters.

If we consider the doubling time for ovarian cancer cells
to be roughly 9.22 days, as given in Panetta (1997), this
leads to b � 0:075 (1/day). One can also assume that the
total number of tumor cells is about N0�10

10 at detection
and the total number of cells at death is about N1�10

13.
Using the above parameters in the numerical integration
and applying 6 cycles of chemotherapy every 21 days (as
given to ovarian cancer patients), with a reasonable choice
of the chemotherapy strength, we find that the Emax model
also predicts that sequencing of chemotherapy followed by
surgery is a better strategy.

4. Discussion and conclusion

Primary cytoreductive surgery followed by platinum-
based combination chemotherapy represents the current
‘‘standard of care’’ for patients with advanced ovarian
cancer (Griffiths, 1975; Hacker et al., 1983; Delgado et al.,
1984; Bertelsen, 1990; Hoskins et al., 1994; Bristow et al.,
2002). The rationale for this sequence of care is based on
several non-randomized studies that have shown survival is
improved in patients with less than 1–2 cm diameter of
residual tumor after primary surgery, compared to patients
with greater size of residual disease (Markman et al., 2001;
Muggia et al., 2000; Mutch, 2002; Agarwal and Kaye,
2003; Rose et al., 2004). Even with improved intraoperative
and post-operative care it is not possible, in advanced stage
disease, to surgically remove all disease. An alternative to
‘‘conventional primary debulking surgery’’ is neo-adjuvant
chemotherapy (NACT) where the sequence of care is initial
chemotherapy followed by surgery and then further
chemotherapy. One reason is that NACT decreases tumor
volume and increases the chances of maximal tumor
resection.

Several clinical studies have addressed the sequencing of
surgery and chemotherapy (Jacob et al., 1991; Surwit et al.,
1996; Vergote et al., 1998; Schwartz et al., 1999;
Kayikcioglu et al., 2001; Kuhn et al., 2001; Mazzeo
et al., 2003; Steed et al., in press). In an analysis by Surwit
et al. (1996) the median survival of 29 patients who
underwent primary chemotherapy was 22 months, similar
to that of patients who undergo primary surgery. In
another retrospective study (Schwartz et al., 1999),
progression-free and overall survival were compared
between patients treated with NACT followed by interval
debulking surgery and those treated by primary cytor-
eductive surgery; despite the fact that the former group was
older and had a poorer performance status, they concluded
that while progression-free and overall survival were
equivalent in the two groups, quality of life in the latter
group was superior. In a recent study, Kayikcioglu et al.
(2001) compared NACT and primary surgery in advanced
epithelial ovarian carcinoma and reported that patients
who received NACT improved more rapidly when the
cancer was sensitive to the chemotherapy compared with
those who underwent extensive primary cytoreductive
surgery. In the NACT patients, a smaller amount of
disease was much easier to resect. In other words, NACT
patients needed less aggressive surgery. Mazzeo et al.
(2003) also report results of NACT in patients with
advanced-stage ovarian cancer. They conclude that NACT
followed by optimal debulking may be a safe and valuable
treatment alternative in patients with primarily unresect-
able advanced-stage bulky ovarian cancer. Patients with an
objective response to chemotherapy or absence of macro-
scopic residual tumor after surgery have a better outcome.
In a very recent study, Steed et al. (in press) also compared
progression free survival and overall survival of ovarian
cancer patients treated with NACT and surgery to primary
surgery and post-operative chemotherapy. According to
their results, primary surgery should be considered in all
patients; however, NACT may be an alternative in a subset
of women with the intent to also perform interval debulking.
Clearly, additional clinical studies are required to

evaluate the role of NACT and interval debulking surgery.
As mentioned earlier, a large multicenter clinical trial
(EORTC 55971) to more accurately address the question of
sequencing of therapies is underway, but there are
numerous challenges and it will be many years before the
results of this trial are available. Thus, a validated
mathematical model may provide guidance as to the
optimal design of clinical trials and hopefully lead to
improvement in initial treatment planning.
In this paper, we have presented a simple mathematical

model to study the effects of sequencing surgical and
chemotherapeutic treatments in ovarian cancer. Our
primary aim was to develop a simple model that
incorporates the tumor growth kinetics as well as the
effects of the treatments. We used Gompertzian and
generalized Logistic growth models, and combined them
with different cell-kill hypotheses. Surgery was assumed to
kill expð�ksÞ of the tumor cells at time of treatment. Our
results showed that for both Gompertzian and generalized
logistic growth models: (i) Using the log-kill hypothesis,
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sequencing of chemotherapy first followed by surgery is
always the optimal one. According to the Gompertzian (or
logistic) growth model, larger tumors grow much slower
than smaller ones. On the other hand, the log-kill
hypothesis assumes that the cell-kill is proportional to
tumor size, thus larger tumors are more effectively reduced
by the drug. So, we can expect that sequencing of CS will
be the better strategy. This supports the idea of NACT
followed by the surgery. (ii) For the Norton and Simon
hypothesis, the cell-kill is proportional to the growth rate
(its effect is smaller near the carrying capacity). In this case,
the sequencing is dependent on the drug concentration
function. If

R t

t0
cðtÞdtotf � t0, where less total drugs would

need to be administered, sequencing of chemotherapy first
followed by surgery is a better strategy. For both
hypotheses, the exponential growth model gives identical
results for CS or SC. (iii) For the Emax hypothesis, different
situations can pertain, for all of the growth models,
depending on the choice of parameters. If we use some
realistic schedules for the chemotherapy, for the range of
parameters relevant to ovarian cancer, all three cell-kill
hypotheses predict that the sequencing of chemotherapy
followed by surgery is a better strategy. Clearly, more
detailed studies are necessary to validate this prediction.

Our results also indicate that the effects of chemotherapy
are more pronounced for larger ks, which means that more
of the tumor is debulked during surgery. One of the main
difficulties in modeling tumor growth and treatment is the
estimation of parameters in the mathematical models. The
results presented here for a class of simple models are
mostly general and independent of a particular choice of
parameters, as a result these models may be useful for
understanding the effects of sequencing different treatment
strategies.

As mentioned in the introduction, some anticancer
agents induce cytotoxic effects during specific phases of
the cell cycle. These cell cycle specific drugs tend to be very
schedule dependent, because the only way to increase the
total cell-kill is by extending the duration of exposure, not
by increasing the dose. Thus, it is important to consider
different phases in the mathematical model. Generalization
of our model to two compartment models is straightfor-
ward. Although, it does not affect our results on optimal
sequencing of surgery and chemotherapy, it is important
to consider it in order to determine some treatment
strategies such as treatment period and drug infusion time
(Panetta, 1997).

In future work we intend to include other effects into the
model, in particular the spatial dependence of the cell as
well as the details of nutrient supply, oxygen flow and
tumor response to the nutrients. Another interesting
problem would be to consider the effects of radiotherapy
and find the optimal sequencing of multimodal cancer
treatments, see, for example, Bell and Wien (2001, 2002). A
problem with Gompertzian (or generalized logistic) growth
models is that they do not allow for the temporary
dormancy of a tumor (Retsky, 2004). A modified
Gompertz model with a stochastic growth rate has been
developed to allow for a stepwise growth pattern and
possibility of dormant phases in breast cancer (Retsky et
al., 1990; Heuser et al., 1979; Speer et al., 1984). Including
such effects in the mathematical model is another direction
we intend to pursue in future work.
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