MATH 495: Homework \#6

Spring 2017
Due: Monday, May 1, 2017
Solve the below questions related to cancer dynamics models. The first studies the tumor-immune model (Resource [10]), the second an optimal control problem (Resource [12]), and the third a stochastic model of carcinogenesis (Resource [14]).

1. Consider the non-dimensionalized version of the system of equations describing tumor-immune interactions from Resource [10]:

$$
\begin{align*}
& \frac{d x}{d t}=\sigma+\rho \frac{x y}{\eta+y}-\mu x y-\delta x \tag{1}\\
& \frac{d y}{d t}=\alpha y(1-\beta y)-x y
\end{align*}
$$

Show that for all positive parameter values, the system cannot exhibit any periodic orbits.
Hint: Use Bendixson's Criterion (i.e. the Bendixson-Dulac theorem), with auxilliary function $\phi(x, y)=\frac{1}{x y}$.
2. Find the optimal control $u^{*}(t)$ and corresponding state $x^{*}(t)$ that minimizes the objective functional

$$
J(u):=\int_{1}^{2}\left(t u^{2}(t)+t^{2} x(t)\right) \mathrm{d} t
$$

subject to the IVP

$$
\begin{array}{r}
\dot{x}=-u(t), \\
x(1)=1 .
\end{array}
$$

Hint: First form the corresponding Hamiltonian $H(t, x, u, \lambda)(\lambda$ is the adjoint), and form the necessary conditions (i.e. the Pontryagin Maximum Principle). What boundary-value problem does the state-adjoint system satisfy?
3. Assuming a two-stage disease (i.e. two mutations are required for malignancy), a system of three differential equations describing the probability
of a cell being in each stage ($i=0,1,2$) at time t can be derived (in class) as below:

$$
\begin{align*}
& \dot{p}_{0}=-\lambda_{0} p_{0}, \\
& \dot{p}_{1}=\lambda_{0} p_{0}-\lambda_{1} p_{1}, \tag{2}\\
& \dot{p}_{2}=\lambda_{1} p_{1} .
\end{align*}
$$

More precisely, $p_{i}(t)$ denotes the probability that a single cell is in stage i at time t. Here stage 0 denotes a normal (healthy) cell, and stage 2 a fully malignant cell. Assume, for simplicity, that the λ_{i} are constant and distinct.
(a) Assuming the cell is healthy at time $t=0$, write down a set of initial conditions for the system (2).
(b) Solve the IVP described by equations (2) with initial conditions as in part (a).
Hint: Start with the p_{0} equation, and work down from there.
(c) The hazard function $h(t)$ represents the instantaneous rate of developing the disease, i.e. the incidence rate for a random event. If we assume a population of N cells acting independently, it can be shown (again, in class), that $h(t)$ is given by

$$
h(t)=N \frac{\dot{p}_{2}(t)}{1-p_{2}(t)} .
$$

Assuming that $p_{2}(t) \approx 0$, show that $h(t)$ is, to first order, a line. Find its slope. For more details, see Resource [14].

