
MATH 495: Homework #5
Spring 2017

Due: Tuesday, April 11, 2017

Solve the below questions related to cancer dynamics models. These questions
require a combination of theoretical and computational analysis.

1. Consider a general cancer growth model in the presence of chemotherapy
under the log-kill hypothesis:

Ṅ = f(N)N − u(t)N. (1)

Here u(t) denotes the effect of any piecewise continuous treatment on
the cancer population, and is independent of tumor size N . Furthermore,
recall from class that a theoretical bolus injection of size um administered at
time t = T can be dynamically understood as the solution of the following:

˙̄N = f(N̄)N̄ , for 0 < t < T

N̄(T+) = N̄(T−)e−um.
(2)

The goal of this exercise is to show that a bolus injection is optimal over
all treatments of size um, in the case that the per-capita growth rate
is decreasing (e.g. for sigmoidal kinetics).

(a) Assume that N(0) = N̄(0) = N0 (both types of treatment begin with
the same initial tumor mass) . For any continuous treatment strategy,
show that N(t)≤N̄(t), for t ∈ [0, T ).

(b) Assume that f ′(N) ≤ 0, and that u(t) is any treatment regime such

that
∫ T

0 u(t) dt = um. That is, all treatments administer the same total
amount of drug um. Using (a), show that N̄(T) ≤ N(T). This says
that over any treatment which preserves the total administered dose, a
bolus injection at the final time reduces the tumor size the most. This
is the 1D analog of “bang-bang” controls, in the context of optimal
control theory (which I hope to talk about soon!).
Hint: As used in the derivation in class, integrate the ODE to obtain an
integro-differential equation (note: not the solution, but an equation
defining the solution). From this, I claim you can make bounds to
relate the two final tumor sizes.



(c) Similarly, assuming now that f ′(N) ≥ 0, show that a bolus injection
at time t = 0 is optimal in reducing the final tumor size over all ad-
ministered treatments of fixed size um.

2. In class, we have discussed a model of tumor-immune system interactions,
described via the below coupled nonlinear differential equations:

dE

dt
= s+ p

ET

g + T
−mET − dE,

dT

dt
= aT (1− bT )− nET.

(3)

Here E denotes the effector (immune, such as natural killer or cytotoxic
T) cell concentration, and T is the tumor cell population. As with the
Gyllenberg-Webb model of quiescence, we show here that the first quad-
rant is invariant, and that cell populations remain bounded. Throughout
the remainder of this exercise, assume that the initial conditions
satisfy 0 < T(0) < 1/b,E(0) ≥ 0.

(a) Show that T (t), E(t) ≥ 0, for all times t ≥ 0.
Hint: What is the sign of the derivatives if one of the populations be-
comes zero in finite time? This is completely analogous to Gyllenberg-
Webb analysis.

(b) Show that T (t) ≤ 1
b for t > 0.

(c) Define λ := p
ng , and u(t) := E(t) + λT (t). Show that

du

dt
≤ s+ λ

a+ d

b
− du(t). (4)

(d) Using the result of part (c), conclude that u(t) is bounded above, and
hence as is E(t).
Hint: Very similar idea to HW#4, Problem 2. What kind of growth is
occurring on the RHS of equation (4)?

Thus, both tumor (part (b)) and effector (part (d)) cell populations
remain bounded at all times.



3. Consider the non-dimensionalized version of system (3):

dx

dτ
= σ + ρ

xy

η + y
− µxy − δx,

dy

dτ
= αy(1− βy)− δx.

(5)

Parameter values can be obtained to fit the experimental data in the work;
in Reference [10] the authors find these to be the following:

σ = 0.1181, ρ = 1.131, η = 20.19, µ = 0.00311,

δ = 0.3743, α = 1.636, and β = 2.0× 10−3.

(a) Using software, plot a phase portrait for the system (5). Your result
should be a computer generated plot, giving a representative solution
trajectory for each qualitatively distinct set of initial conditions. Note
that you may use the software (pplane2014b.m) provided with HW #3.

(b) Verify that the two stable steady states observed in part (a) indeed have
the observed type (sink, node, saddle, etc.). You may use any software
to compute eigenvalues and/or determinants and traces. You may also
estimate the steady states from your phase portrait numerically (e.g.
you don’t have to compute them by hand).


