MATH 350: Linear Algebra
 Quiz 5

NAME: \qquad
Solve the following problems on this sheet of paper. No calculators or other electronic devices are permitted. There is a problem on the back!

1. (6 points) Recall that we showed in class that, for a finite-dimensional subspace U of an inner product space V, that there exists the direct-sum decomposition

$$
V=U \bigoplus U^{\perp}
$$

That is, for each $v \in V$, there exists unique $u \in U, w \in U^{\perp}$ such that

$$
v=u+w .
$$

For such a decomposition of v, define the linear operator $P_{U}: V \rightarrow V$ by

$$
P_{U}(v):=u
$$

Note that this is just the orthogonal projection of V onto U, so that $P_{U}(v) \in U$. Show that, for each $v \in V$,

$$
\left\|v-P_{U}(v)\right\| \leq\|v-u\|
$$

for all $u \in U$. That is, the projection satisfies a natural minimization problem of finding $u \in U$ such that $\|v-u\|$ is smallest.
2. (4 points) Prove or disprove: there is an inner product on \mathbb{R}^{2} such that the associated norm is given by

$$
\left\|\left(x_{1}, x_{2}\right)\right\|=\left|x_{1}\right|+\left|x_{2}\right|
$$

