MATH 350: Linear Algebra

Quiz 2

NAME: \qquad Date: October 4, 2018
Solve the following problems on this sheet of paper. No calculators or other electronic devices are permitted.

1. (6 points) Let

$$
\begin{aligned}
V & =M_{2 \times 2}(\mathbb{R}), \\
W_{1} & =\left\{\left.\left(\begin{array}{cc}
a & b \\
c & a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}, \\
W_{2} & =\left\{\left.\left(\begin{array}{cc}
0 & a \\
-a & b
\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\} .
\end{aligned}
$$

Prove that W_{1} is a subspace of V. Find the dimensions of $W_{1}, W_{2}, W_{1}+W_{2}$, and $W_{1} \cap W_{2}$. Provide justification (e.g. no points will be given for guessing). Note: you do not need to prove that W_{2} is a subspace of V (it is).
2. (4 points) Is there a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
T\left(\begin{array}{c}
1 \\
0 \\
3
\end{array}\right) & =\binom{1}{1}, \\
T\left(\begin{array}{c}
-2 \\
0 \\
-6
\end{array}\right) & =\binom{2}{1} ?
\end{aligned}
$$

If there is, find one such T. If none exist, explain why. Hint: Note that

$$
\left(\begin{array}{c}
-2 \\
0 \\
-6
\end{array}\right)=-2\left(\begin{array}{l}
1 \\
0 \\
3
\end{array}\right) .
$$

