MATH 350: Homework \#9

Due: Thursday, November 29, 2018

Solve the below problems concerning diagonalizability, invariant subspaces, and the Cayley-Hamilton theorem. A (possibly improper) subset of them will be graded. All calculations should be done analytically.

1. Define the linear operator $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ by

$$
T(f(x))=f(1)+f^{\prime}(0) x+\left(f^{\prime}(0)+f^{\prime \prime}(0)\right) x^{2}
$$

Is T diagonalizable? If so, find an ordered basis β such that $[T]_{\beta}$ is diagonal, and find $[T]_{\beta}$.
2. For

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array}\right)
$$

Find an expression for A^{n}, for an arbitrary positive integer n.
Hint: Attempt to diagonalize, and note that if

$$
A=Q^{-1} B Q
$$

then

$$
\begin{aligned}
A^{2} & =\left(Q^{-1} B Q\right)\left(Q^{-1} B Q\right) \\
& =Q^{-1} B^{2} Q
\end{aligned}
$$

Generalize this for any positive integer n.
3. Fix $f(t)$ as a polynomial with coefficients from F. Let $T: V \rightarrow V$, where V is a vector space over F. Recall that $f(T)$ is a linear operator from V to V. Show that

$$
f(T) T=T f(T)
$$

i.e. that T and $f(T)$ commute with one another. Note that $f(T) T$ is a linear operator on V defined by

$$
(f(T) T)(v):=f(T)(T(v))
$$

and similarly for $T f(T)$.
4. Consider the following $k \times k$ matrix

$$
A=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & -a_{0} \\
1 & 0 & \cdots & 0 & -a_{1} \\
0 & 1 & \cdots & 0 & -a_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & -a_{k-2} \\
0 & 0 & \cdots & 1 & -a_{k-1}
\end{array}\right)
$$

where $a_{0}, a_{1}, \ldots, a_{k-1}$ are arbitrary scalars. Prove that the characteristic polynomial of A is

$$
f_{A}(t)=(-1)^{k}\left(a_{0}+a_{1} t+\cdots+a_{k-1} t^{k-1}+t^{k}\right)
$$

Hint: Use induction on the size of the matrix k, and expand the determinant along the first row.
5. Consider the linear map $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ defined by

$$
T(A)=\left(\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right) A
$$

Find the T-cyclic subspace generated by

$$
z=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Note: using my notation from class, I am asking you to find $W=Z(z, T)$.
6. Let A be a square matrix of size n. Prove that

$$
\operatorname{dim}\left(\operatorname{span}\left(\left\{I_{n}, A, A^{2}, \ldots\right\}\right)\right) \leq n
$$

Hint: Use the Cayley-Hamilton theorem.
7. Let V be a two-dimensional vector space, and $T \in \mathcal{L}(V)$. Show that if V is not itself a cyclic subspace (that is, there exists no $v \in V$ such that $V=Z(v, T))$, then

$$
T=c I_{V},
$$

for some $c \in F$. Here I_{V} is the identity operator on V.
Hint: This requires some finesse. Note that we can form a basis $\beta=\left\{v_{1}, v_{2}\right\}$ for V. What does the assumption say about $T\left(v_{1}\right)$ and $T\left(v_{2}\right)$? Relate this to eigenvalues and eigenvectors.

