MATH 350: Homework \#8

Due: Thursday, November 8, 2018

Solve the below problems concerning determinants and eigenvalues. A (possibly improper) subset of them will be graded. All calculations should be done analytically.

1. Compute the determinant of the following matrix:

$$
A=\left(\begin{array}{cccc}
1 & 0 & -2 & 3 \\
-3 & 1 & 1 & 2 \\
0 & 4 & -1 & 1 \\
2 & 3 & 0 & 1
\end{array}\right)
$$

2. A matrix $M \in M_{n \times n}(C)$ is called skew-symmetric if $M^{T}=-M$. Prove that if M is skew-symmetric and n is odd, then M is not invertible. Is the same true if n is even? Prove or give a counterexample.
3. The goal of this exercise is to compute determinants of block diagonal matrices. That is, square matrices of the form

$$
M=\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)
$$

where A and C are square matrices, and 0 is a matrix consisting entirely of zeros. We proceed in steps.
(a) Suppose that $A \in M_{n \times n}(F)$. Using mathematical induction and the definition of the determinant, prove that

$$
\operatorname{det}\left(\begin{array}{cc}
A & 0_{n \times m} \\
0_{m \times n} & I_{m}
\end{array}\right)=\operatorname{det}(A)
$$

Note that the below analogous formula holds as well for $B \in M_{m \times m}(F)$ (you do not have to prove this):

$$
\operatorname{det}\left(\begin{array}{cc}
I_{n} & 0_{n \times m} \\
0_{m \times n} & B
\end{array}\right)=\operatorname{det}(B)
$$

(b) With A and B as above, use (a) to show that

$$
\operatorname{det}\left(\begin{array}{cc}
A & 0_{n \times m} \\
0_{m \times n} & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B) \text {. }
$$

Hint: Note that by matrix multiplication we may factor

$$
\left(\begin{array}{cc}
A & 0_{n \times m} \\
0_{m \times n} & B
\end{array}\right)=\left(\begin{array}{cc}
A & 0_{n \times m} \\
0_{m \times n} & I_{m}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0_{n \times m} \\
0_{m \times n} & B
\end{array}\right) .
$$

(c) Prove that for A and B square

$$
\operatorname{det}\left(\begin{array}{cc}
A & C \\
0 & B
\end{array}\right)=\operatorname{det}(A) \operatorname{det}(B)
$$

Here 0 is a matrix of zeros of the right size. Hint: Work in two cases: A is not invertible, and A is invertible. The first case is simpler. For the case where A^{-1} exists, use a factorization similar the one suggested in part (b).
4. Let $\beta=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ be a subset of \mathbb{R}^{n} containing n distinct vectors.

Let $B \in M_{n \times n}(\mathbb{R})$ be the matrix having u_{j} as its j th column:

$$
B=\left(\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right) .
$$

Prove that β is a basis for \mathbb{R}^{n} if and only of $\operatorname{det}(B) \neq 0$.
5. True or False: Every linear operator on an n-dimensional vector space has n distinct eigenvalues. Prove or provide a counterexample.
6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
T\binom{x}{y}=\binom{-2 x+3 y}{-10 x+9 y}
$$

Find the eigenvalues of T and an ordered basis β for \mathbb{R}^{2} such that $[T]_{\beta}$ is diagonal. Provide the change of coordinates matrix Q that takes T from the standard ordered basis of \mathbb{R}^{2} to β.
7. Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be defined by

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
c & d \\
a & b
\end{array}\right)
$$

Find the eigenvalues of T and an ordered basis β for $M_{2 \times 2}(\mathbb{R})$ such that $[T]_{\beta}$ is diagonal.

