MATH 350: Homework \#7

Due: Thursday, November 1, 2018

Solve the below problems concerning coordinates, elementary matrices, and determinants. A (possibly improper) subset of them will be graded. All calculations should be done analytically.

1. Find the change of coordinate matrix that changes β^{\prime}-coordinates into β coordinates, where

$$
\begin{aligned}
\beta & =\left\{\binom{-4}{3},\binom{-2}{-1}\right\}, \\
\beta^{\prime} & =\left\{\binom{2}{-1},\binom{-4}{1}\right\} .
\end{aligned}
$$

2. Let T be the linear operator on $P_{1}(\mathbb{R})\left(T: P_{1}(\mathbb{R}) \rightarrow P_{1}(\mathbb{R})\right)$ defined by

$$
T(f(x))=f^{\prime}(x)
$$

Let β be the standard ordered basis for $P_{1}(\mathbb{R})$, and $\beta^{\prime}=\{1-x, 1+x\}$ another ordered basis. Use the change of coordinate matrix Q to find $[T]_{\beta^{\prime}}$. Note: You will have to find the inverse of a 2×2 matrix.
3. Write the matrix

$$
A=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
3 & 0 & 0
\end{array}\right)
$$

as the product of elementary matrices.
4. True or False: Assume the A and B are matrices related by an elementary row operation. A and B may have different rank. Provide justification.
5. Consider the linear transformation $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ defined by

$$
T(f(x))=f^{\prime \prime}(x)+2 f^{\prime}(x)-f(x) .
$$

Show that T is invertible. Using the standard basis for $P_{2}(\mathbb{R})$, find a representation for T^{-1}. Note: I am not asking you to find the a matrix representation for T^{-1}, but precisely $T^{-1}(f(x))$, for $f(x) \in P_{2}(\mathbb{R})$. Of course, to get this representation, you can use a matrix and theorems.
6. Prove that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for any $A, B \in M_{2 \times 2}(F)$.
7. Find the value of k that satisfies the following equation:

$$
\operatorname{det}\left(\begin{array}{ccc}
b_{1}+c_{1} & b_{2}+c_{2} & b_{3}+c_{3} \\
a_{1}+c_{1} & a_{2}+c_{2} & a_{3}+c_{3} \\
a_{1}+b_{1} & a_{2}+b_{2} & a_{3}+b_{3}
\end{array}\right)=k \operatorname{det}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right)
$$

