MATH 350: Homework \#6

Due: Thursday, October 25, 2018

Solve the below problems concerning matrices, isomorphisms, and coordinates. A (possibly improper) subset of them will be graded. All calculations should be done analytically.

1. Let V be a vector space, and let $T: V \rightarrow V$ be linear. Prove that $T^{2}=T_{0}$ if and only if $R(T) \subseteq N(T)$. Recall that T_{0} is the zero transformation of V :

$$
T_{0}(x)=0,
$$

for all $x \in V$.
2. Let V be a finite dimensional vector space, and let $T: V \rightarrow V$ be linear.
(a) If $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$, prove that $R(T) \cap N(T)=\{0\}$. Deduce that $V=R(T) \bigoplus N(T)$.
(b) Prove that $V=R\left(T^{k}\right) \bigoplus N\left(T^{k}\right)$ for some positive integer k.
3. True or False: $T: M_{2 \times 2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ is a vector space isomorphism, where

$$
T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=a+2 b x+(c+d) x^{2} .
$$

Provide justification.
4. Let

$$
V=\left\{\left.\left(\begin{array}{cc}
a & a+b \\
0 & c
\end{array}\right) \right\rvert\, a, b, c \in F\right\} .
$$

Construct an isomorphism between V and F^{3}.
5. Suppose that V is finite dimensional, and $S, T \in \mathcal{L}(V)$. Prove that $S T=I_{V}$ if and only if $T S=I_{V}$.
6. (Hard) Prove that if there exists linear map on V (i.e. $T: V \rightarrow V, T$ linear), such that both the null space and range of T are finite-dimensional,
then V is finite dimensional.
Hint: Write down bases for $N(T)$ and $R(T)$. Note that every element in the basis for $R(T)$ is of the form $T\left(x_{i}\right)$, some $x_{i} \in V$ (this is just the definition of the range). Now, for any $x \in V, T(x) \in R(T)$. Proceed from there to show that x can be written as a finite linear combination of vectors.

