MATH 350: Homework \#5

Due: Thursday, October 18, 2018

Solve the below problems concerning coordinates and matrix representations of linear transformations (mainly Section 2.2). A (possibly improper) subset of them will be graded. All calculations should be done analytically.

1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x-2 y \\
y \\
2 x+y
\end{array}\right)
$$

Let β be the standard ordered basis for \mathbb{R}^{2}, and let

$$
\gamma=\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

Compute $[T]_{\beta}^{\gamma}$.
2. Recall that the set of 2×2 symmetric matrices is a vector space with basis

$$
\beta=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} .
$$

Find the coordinates $[A]_{\beta}$ of the symmetric matrix A relative to β, where

$$
A=\left(\begin{array}{cc}
-2 & -1 \\
-1 & \pi
\end{array}\right)
$$

3. True or False: $\mathcal{L}(V, W)=\mathcal{L}(W, V)$ for all vector spaces V and W over the same field F. If true, prove. If false, give a counterexample.
4. Let

$$
\begin{aligned}
& \alpha=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\} \\
& \beta=\left\{1, x, x^{2}\right\} \\
& \gamma=\{1\}
\end{aligned}
$$

(a) Define $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by $T(A)=A^{T}$. Compute $[T]_{\alpha}$.
(b) Define $T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by

$$
T(f(x))=\left(\begin{array}{cc}
f^{\prime}(0) & 2 f(1) \\
0 & f^{\prime \prime}(3)
\end{array}\right) .
$$

Compute $[T]_{\beta}^{\alpha}$.
(c) Define $T: M_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}$ by $T(A)=\operatorname{tr}(A)$. Compute $[T]_{\alpha}^{\gamma}$.
(d) Define $T: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}$ by $T(f(x))=f(2)$. Compute $[T]_{\beta}^{\gamma}$.
(e) If $A=\left(\begin{array}{cc}1 & -2 \\ 0 & 4\end{array}\right)$, compute $[A]_{\alpha}$.
(f) If $f(x)=3-6 x+x^{2}$, compute $[f(x)]_{\beta}$.
(g) For $a \in \mathbb{R}$, compute $[a]_{\gamma}$.
5. Let V be an n-dimensional vector space with an ordered basis β. Define $T: V \rightarrow F^{n}$ by

$$
T(x)=[x]_{\beta} .
$$

Prove that T is linear. Is T one-to-one (injective)?

