Due: Thursday, October 18, 2018

Solve the below problems concerning coordinates and matrix representations of linear transformations (mainly Section 2.2). A (possibly improper) subset of them will be graded. All calculations should be done analytically.

1. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x-2y\\y\\2x+y\end{array}\right).$$

Let β be the standard ordered basis for \mathbb{R}^2 , and let

$$\gamma = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 2\\2\\3 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}.$$

Compute $[T]^{\gamma}_{\beta}$.

2. Recall that the set of 2×2 symmetric matrices is a vector space with basis

$$\beta = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\}.$$

Find the coordinates $[A]_{\beta}$ of the symmetric matrix A relative to β , where

$$A = \left(\begin{array}{cc} -2 & -1 \\ -1 & \pi \end{array}\right).$$

- 3. True or False: $\mathcal{L}(V, W) = \mathcal{L}(W, V)$ for all vector spaces V and W over the same field F. If true, prove. If false, give a counterexample.
- $4. \quad \text{Let}$

$$\begin{aligned} \alpha &= \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \\ \beta &= \{1, x, x^2\} \\ \gamma &= \{1\} \end{aligned}$$

(a) Define $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ by $T(A) = A^T$. Compute $[T]_{\alpha}$.

(b) Define $T: P_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ by

$$T(f(x)) = \left(\begin{array}{cc} f'(0) & 2f(1) \\ 0 & f''(3) \end{array}\right).$$

Compute $[T]^{\alpha}_{\beta}$.

- (c) Define $T: M_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ by $T(A) = \operatorname{tr}(A)$. Compute $[T]^{\gamma}_{\alpha}$.
- (d) Define $T: P_2(\mathbb{R}) \to \mathbb{R}$ by T(f(x)) = f(2). Compute $[T]^{\gamma}_{\beta}$.

(e) If
$$A = \begin{pmatrix} 1 & -2 \\ 0 & 4 \end{pmatrix}$$
, compute $[A]_{\alpha}$.

- (f) If $f(x) = 3 6x + x^2$, compute $[f(x)]_{\beta}$.
- (g) For $a \in \mathbb{R}$, compute $[a]_{\gamma}$.
- 5. Let V be an n-dimensional vector space with an ordered basis β . Define $T: V \to F^n$ by

$$T(x) = [x]_{\beta}.$$

Prove that T is linear. Is T one-to-one (injective)?