MATH 350: Homework #4

Due: Monday, October 8, 2018

Solve the below problems concerning linear transformations (mainly Sections 2.1 and 2.2). A (possibly improper) subset of them will be graded. All calculations should be done analytically. Note you do not need to do the problems in **red** to hand in for Monday 10/8. But they are good practice for the exam.

1. Let $T: F^4 \to F^2$ be a linear map. Suppose that

$$N(T) = \{(x_1, x_2, x_3, x_4) \mid x_1 = 5x_2, x_3 = 7x_4\}.$$

Show that T is surjective.

2. Let $T: \mathbb{R}^3 \to \mathbb{R}$ be linear. Show that there exists scalars $a, b, c \in \mathbb{R}$ such that

$$T(x, y, z) = ax + by + cz.$$

for all $x, y, c \in \mathbb{R}$. Can you generalize this to $T : F^n \to F$? What about linear transformations between F^n and F^m ?

For the following exercises, we need the following definition.

Definition. Let V be a vector space, and W_1, W_2 subspaces such that $V = W_1 \bigoplus W_2$. A function $T : V \to V$ is called a **projection on** W_1 along W_2 , if, for $x = x_1 + x_2$, with $x_1 \in W_1, x_2 \in W_2$, we have $T(x) = x_1$.

- 3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$.
 - (a) Find a formula for T(x, y), where T represents the projection on the y-axis along the x-axis.
 - (b) Find a formula for T(x, y), where T represents the projection on the y-axis along the line $L = \{(a, a) \mid a \in \mathbb{R}\}.$
- 4. Let $T: V \to V$ be a projection on W_1 along W_2 . Prove that T is linear.
- 5. Let T be as in Problem 4. Show that $W_1 = R(T)$ and $W_2 = N(T)$.

6. Recall that the set of 2×2 symmetric matrices is a vector space with basis

$$\beta = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\}.$$

Find the coordinates $[A]_{\beta}$ of the symmetric matrix A relative to β , where

$$A = \left(\begin{array}{cc} -2 & -1 \\ -1 & \pi \end{array}\right).$$

7. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x+y\\x+2y\\10y-x\end{array}\right).$$

Let β be the standard basis for \mathbb{R}^2 , and

$$\gamma = \left\{ \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\3 \end{pmatrix} \right\}.$$

Note that γ is a basis for \mathbb{R}^3 . Compute the matrix representation $[T]^{\gamma}_{\beta}$ of T with respect to bases β and γ .