MATH 350: Homework \#4

Due: Monday, October 8, 2018

Solve the below problems concerning linear transformations (mainly Sections 2.1 and 2.2). A (possibly improper) subset of them will be graded. All calculations should be done analytically. Note you do not need to do the problems in red to hand in for Monday 10/8. But they are good practice for the exam.

1. Let $T: F^{4} \rightarrow F^{2}$ be a linear map. Suppose that

$$
N(T)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}=5 x_{2}, x_{3}=7 x_{4}\right\} .
$$

Show that T is surjective.
2. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be linear. Show that there exists scalars $a, b, c \in \mathbb{R}$ such that

$$
T(x, y, z)=a x+b y+c z
$$

for all $x, y, c \in \mathbb{R}$. Can you generalize this to $T: F^{n} \rightarrow F$? What about linear transformations between F^{n} and F^{m} ?
For the following exercises, we need the following definition.
Definition. Let V be a vector space, and W_{1}, W_{2} subspaces such that $V=W_{1} \bigoplus W_{2}$. A function $T: V \rightarrow V$ is called a projection on \mathbf{W}_{1} along $\mathbf{W}_{\mathbf{2}}$, if, for $x=x_{1}+x_{2}$, with $x_{1} \in W_{1}, x_{2} \in W_{2}$, we have $T(x)=x_{1}$.
3. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$.
(a) Find a formula for $T(x, y)$, where T represents the projection on the y-axis along the x-axis.
(b) Find a formula for $T(x, y)$, where T represents the projection on the y-axis along the line $L=\{(a, a) \mid a \in \mathbb{R}\}$.
4. Let $T: V \rightarrow V$ be a projection on W_{1} along W_{2}. Prove that T is linear.
5. Let T be as in Problem 4. Show that $W_{1}=R(T)$ and $W_{2}=N(T)$.
6. Recall that the set of 2×2 symmetric matrices is a vector space with basis

$$
\beta=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} .
$$

Find the coordinates $[A]_{\beta}$ of the symmetric matrix A relative to β, where

$$
A=\left(\begin{array}{cc}
-2 & -1 \\
-1 & \pi
\end{array}\right)
$$

7. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+y \\
x+2 y \\
10 y-x
\end{array}\right)
$$

Let β be the standard basis for \mathbb{R}^{2}, and

$$
\gamma=\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
2 \\
3
\end{array}\right)\right\}
$$

Note that γ is a basis for \mathbb{R}^{3}. Compute the matrix representation $[T]_{\beta}^{\gamma}$ of T with respect to bases β and γ.

