MATH 350: Homework \#3

Due: Thursday, October 4, 2018

Solve the below problems concerning sums and direct sums and linear transformations (mainly Sections 1.6 and 2.1). A (possibly improper) subset of them will be graded. All calculations should be done analytically

1. Let $U_{1}, U_{2}, \ldots, U_{m}$ be subspaces of a vector space V. Show that $W:=$ $U_{1}+U_{2}+\cdots+U_{m}$ is a subspace of V.
2. Let U_{1} and U_{2} be finite-dimensional subspaces of a vector space V, and let $V=U_{1}+U_{2}$. Deduce that V is a direct sum of U_{1} and U_{2} if and only if

$$
\operatorname{dim}(V)=\operatorname{dim}\left(U_{1}\right)+\operatorname{dim}\left(U_{2}\right)
$$

3. Let $V=M_{2 \times 2}(F)$, and

$$
\begin{aligned}
& U_{1}=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & a
\end{array}\right) \right\rvert\, a, b, c \in F\right\}, \\
& U_{2}=\left\{\left.\left(\begin{array}{cc}
0 & a \\
-a & b
\end{array}\right) \right\rvert\, a, b \in F\right\} .
\end{aligned}
$$

Show that U_{1} and U_{2} are subspaces of $M_{2 \times 2}$, and find the dimensions of $U_{1}, U_{2}, U_{1}+U_{2}$, and $U_{1} \cap U_{2}$.
Note: we did not prove it, but it is not hard to show that the intersection of subspaces is a subspace, so the final dimension is well-defined.
4. In \mathbb{R}^{4}, let

$$
\begin{aligned}
& W_{1}=\{(a, b, 0,0) \mid a, b \in \mathbb{R}\}, \\
& W_{2}=\{(0,0, c, 0) \mid c \in \mathbb{R}\}, \\
& W_{3}=\{(0,0,0, d) \mid d \in \mathbb{R}\}
\end{aligned}
$$

Show that $\mathbb{R}^{4}=W_{1} \bigoplus W_{2} \bigoplus W_{3}$.
5. Define $T: P_{2}(\mathbb{R}) \rightarrow P(\mathbb{R})$ by

$$
T(f(x))=x f(x)+f^{\prime}(x)
$$

Show that T is a linear transformation. Is it one-to-one and/or onto? Provide justification.
6. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear, $T(1,0)=(1,4)$, and $T(1,1)=(2,5)$. What is $T(2,3)$? Is T one-to-one?
7. Is $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(x, y)=(1, y)$ linear? Why or why not?
8. Recall that $P(\mathbb{R})$ is the set of all polynomials with coefficients in \mathbb{R}. Define

$$
\begin{aligned}
T: P(\mathbb{R}) & \rightarrow P(\mathbb{R}), \\
T(f(x)) & =\int_{0}^{x} f(t) \mathrm{d} t
\end{aligned}
$$

Prove that T is linear and one-to-one, but not onto.

