## MATH 350: Homework \#2

## Due: Monday, September 24, 2018

Solve the below problems concerning linear indepedence, bases, and dimension (mainly Sections 1.5-1.6). A (possibly improper) subset of them will be graded. All calculations should be done analytically

1. Find a set of linearly independent diagonal matrices that generate the vector space of $3 \times 3$ diagonal matrices over $\mathbb{R}$.
2. Let $V$ be a vector space, and let $S_{1} \subseteq S_{2} \subseteq V$. Show that is $S_{1}$ is linearly dependent, then so is $S_{2}$.
3. Find a basis for the following subspace of real polynomials:

$$
W=\left\{f(x) \mid f(x)=a x^{3}+b x^{2}+c x+d, f(1)=0\right\}
$$

4. Is $\left\{1+2 x+x^{2}, 3+x^{2}, x+x^{2}\right\}$ a basis for $P_{2}(\mathbb{R})$ ? Justify your answer.
5. The set of all skew-symmetric matrices is a subspace of $M_{n \times n}(\mathbb{R})$ (recall that a matrix $A \in M_{n \times n}(\mathbb{R})$ is skew-symmetric if and only if $A^{T}=-A$ ). Find a basis for this subspace. What is its dimension?
6. The set of solutions of the system of equations

$$
\begin{array}{r}
x-2 y+z=0 \\
2 x-3 y+z=0
\end{array}
$$

is a subspace of $\mathbb{R}^{3}$. Find a basis for it, and its dimension.
7. Show that if $W$ is a subspace of a finite-dimensional vector space $V$ such that $\operatorname{dim}(W)=\operatorname{dim}(V)$, then $W=V$.

