MATH 350: Homework \#10

Due: Wednesday, December 12, 2018

Solve the below problems concerning Jordan canonical form and inner product spaces. A (possibly improper) subset of them will be graded. All calculations should be done analytically.

1. Let $T \in \mathcal{L}(V)$, and let λ be an eigenvalue of T. Show that K_{λ} is a T invariant subspace of V. Recall that K_{λ} is the generalized eigenspace of T corresponding to λ :

$$
K_{\lambda}=\left\{x \in V \mid\left(T-\lambda I_{V}\right)^{p}(x)=0, \text { some } p \in \mathbb{N}\right\} .
$$

2. Let $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be defined by

$$
T(A)=2 A+A^{T}
$$

Find a Jordan canonical basis of $M_{2 \times 2}(\mathbb{R})$, and the corresponding Jordan canonical form of T.
3. Repeat Problem 2 for the matrix A given by

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 1 & -1 & 3
\end{array}\right)
$$

That is, find the Jordan form (and Jordan basis) for A. Find a change of coordinates matrix Q that transforms A into the Jordan form of A. Hint: Remember, A is the matrix representation with respect to the standard ordered basis.
4. Let V be the (real) subspace of real-valued functions on \mathbb{R} defined by

$$
V=\operatorname{span}\left(\left\{e^{t}, t e^{t}, t^{2} e^{t}, e^{2 t}\right\}\right)
$$

Define $T: V \rightarrow V$ by

$$
T(f)=f^{\prime}
$$

Find the Jordan form of T, and a Jordan canonical basis for V.
5. Fix $A \in M_{2 \times 2}(\mathbb{C})$ as

$$
A=\left(\begin{array}{cc}
1 & i \\
-i & 2
\end{array}\right)
$$

Show that

$$
\langle x, y\rangle:=x A y^{*}
$$

is an inner-product on \mathbb{C}^{2}. Compute $\langle x, y\rangle$ for $x=(1, i)$ and $y=(1+i, 3-$ $2 i)$. Recall that y^{*} denotes the conjugate transpose, or adjoint, of the vector $y \in \mathbb{C}^{2}$.
6. Let V be an inner product space, and $T: V \rightarrow V$ is a given linear operator. Suppose that $\|T(x)\|=\|x\|$ for all $x \in V$. Show that T is injective.
7. Consider the subset $S \subset M_{2 \times 2}(\mathbb{R})$ defined by

$$
S=\left\{\left(\begin{array}{cc}
3 & 5 \\
-1 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 9 \\
5 & -1
\end{array}\right),\left(\begin{array}{cc}
7 & -17 \\
2 & -6
\end{array}\right)\right\} .
$$

With respect to the Frobenius norm on $M_{2 \times 2}(\mathbb{R})$, find an orthonormal basis β for $W:=\operatorname{span}(S)$. Find the coordinates (called the Fourier coefficients) of A with respect to the basis β, where

$$
A=\left(\begin{array}{cc}
-1 & 27 \\
-4 & 8
\end{array}\right)
$$

8. Let V be a finite-dimensional inner product space. Show that for any subspace U of V,

$$
V=U \bigoplus U^{\perp}
$$

Recall that U^{\perp} is the orthogonal complement of U. Hint: Use GramSchmidt orthogonalization.

