
MATH 336: Homework #3

Due: Tuesday, October 3, 2017

Solve the below problems concerning differential equations. A (possibly im-
proper) subset of them will be graded. All calculations should be done analyt-
ically, unless marked with an (M). (M) problems require the use of MATLAB.
ES denotes the online lecture notes.

1. (20 points) (ES, p.127-128, #3) Problem 3 in the ODE1 section in the
notes (end of chapter 2).

2. (20 points) (M) Using MATLAB, solve the logistic equation

dN

dt
= 2N(1− N

3
)

numerically, for the 3 different initial conditions N(0) = 1, 2.5, 4 on the
time interval t ∈ [0, 10]. Plot all 3 solutions on the same set of axes, and
use a legend in MATLAB to label each one. Note that you are now solving
ODEs, and not difference equations, so your fundamental command will be
ode45. Please read up on ode45, and/or come talk to me about it if you
have questions. The basic skeleton for the code is below:

tI=0;
tF=10;
IC1=1;
[T1,N1]=ode45(@rhsHw3No2,[tI tF],IC1);

%Add two other initial conditions and plotting below here

This will be the main source code that runs your program, saved as say
hw3No2.m. However, you must create an additional function m-file, where
the right-hand side of the equation is defined. This function should be
called rhsHw3No2.m (note the same name in the code above), and must
be saved in the same directory as hw3No2.m. Inside this function, define
the right-hand side of the logistic equation, exactly as below:

function dNdt=rhsHw3No2(t,N)
r=2;
K=3;



dNdt=r*N.*(1-N/K);
end

Note the keyword function, which distinguishes this from a script (like
hw3No2.m). Here I am giving you the vector field (ODE part) precisely,
but in the future you will have to define it yourself. When you want to
actually solve the equation, you run hw3No2.m and NOT rhsHw3No2.m. I
also did not include the plotting and solving for the other initial conditions
in hw3No2.m, and I expect you to add these features to the code.

3. (10 points) Suppose a population of cells grows exponentially (in contin-
uous time) with a rate constant k. Assume that after τ minutes, the
population doubles. Find an expression for k as a function of τ , that is,
k = k(τ).

4. (20 points) (partly taken from ES, p.128-129, #4) Consider the continuous
Ricker model

dN

dt
= rNe−βN

where β > 0.

(a) Find constants t̄, N̄ such that under the non-dimensionalizationN∗(t∗) :=
1
N̄
N(t̄t∗), N∗(t∗) satisfies the differential equation

dN∗
dt∗

= N∗e
−N∗. (1)

(b) Find the values of N∗ that are inflection points of solutions of the equa-
tion (??). What values of the original Ricker model do these correspond
to? State the concavity on the different population domains (N∗ > 0
only of course).

5. (15 points) (ES, p.130, #1, parts (a) and (b)) Problem 1 in the ODE2
section in the notes (end of chapter 2), parts (a) and (b) only.

6. (15 points)

(a) Consider a bacterial population whose growth rate is

dN(t)

dt
= K(t)N(t) (2)



Here K(t) is the non-constant growth rate. Show that N(t) satisfies

N(t) = N0 exp

(∫ t

0

K(s) dx

)
,

where N0 = N(0).

(b) Show that if K(t) decreases exponentially (that is, K(t) = e−αt for
some α > 0), then N(t) solving (??) must remain bounded (i.e. there
exists a constant M such that N(t) ≤M for all times t). Such growth
is termed Gompertzian, and is often the growth rate utilized to model
solid tumor growth. In fact, despite the model’s simplicity, it has found
a great deal of success in fitting clinical data. See “Tumor growth
and chemotherapy: mathematical methods, computer simulations, and
experimental foundations” in Math. Biosc. (Aroesty et al.) for a
specific example.


