MATH 252: Elementary Differential Equations

Quiz 2

NAME: \qquad Date: September 28, 2017
Solve the following problems on this sheet of paper. Note that there is a problem on the back. No calculators or other electronic devices are permitted.

1. (4 points) Consider the differential equation

$$
\frac{d y}{d t}=1+\cos y .
$$

(a) Plot the phase line for this differential equation. Hint: I suggest first plotting the righthand side $(f(y))$ as a function of y.
(b) Identify ALL equilibrium points as stable (sinks), unstable (sources), or semi-stable (nodes).
2. (2 points) Suppose we know that the function $f(t, y)$ is continuous and that $f(t, 3)=-1$ for all t.
(a) What does this tell you about the slope field for the differential equation

$$
y^{\prime}=f(t, y) ?
$$

I suggest drawing a picture, representing only the information you have been given.
(b) Suppose $y(0)<3$. Is it possible that $y(t) \rightarrow \infty$ as t increases? Give a (short) reason, using your answer from part (a). No credit will be given to simple yes/no answers.
3. (4 points) Consider the IVP

$$
\begin{cases}\frac{d y}{d t} & =y^{3} \\ y(0) & =1\end{cases}
$$

(a) Find a formula for the solution.
(b) State the domain of definition of the solution.
(c) What happens to the solution as it approaches the limits of its domain of definition?

