
Matlab Assignment #7

The assignment is adapted from material through volume 1 of Mathematical Physiology,
by Keener and Sneyd. I am replacing a more standard exercise, which many students found
too challenging, with a topic related to biology and oscillations and signal response, and
which underpins our current understanding of neural responses.

The Hodgkin-Huxley Neuron

Here we introduce a famous work of Alan Hodgkin and Andrew Huxley, in which they
develop the first quantitative model of the propagation of an electrical signal along a squid
giant axon. This theory is now used in a wide variety of excitable cells, and is generally
the way we understand action potentials which cause nerve cells (neurons) to fire. They
later won the Nobel Prize in Biology in 1963 for their work, and the original article remains
one of the most brilliant pieces of mathematical biology ever written. If you are interested,
it can be found freely online: Hodgkin, Alan L., and Andrew F. Huxley. “A quantitative
description of membrane current and its application to conduction and excitation in nerve.”
The Journal of Physiology 117.4 (1952): 500-544. If interested, I highly suggest reading it.

Cell membrane as an electrical circuit

The cell membrane is a semipermeable membrane separating the cell from its environment.
Semipermeability means that some molecules can cross it (hence enter and/or leave the cell),
while others cannot. If the molecules are ionic (i.e. have a charge), this flow then creates a
charge distribution near the cell membrane, hence converting it into a capacitor (object that
stores electrical energy via charge separation). Equilibrium is reached when the electrical
force balances that of the diffusion through the cell membrane. We can then model this
phenomena as a simple electrical circuit, shown below:



Here Cm is the capacitance of the cell membrane, and is just the ratio of the charge Q to
the potential difference V (so Cm = Q

V
), and Iion is the ionic current generated in the circuit.

Lastly, V is defined (by convention) to be difference between the intracellular potential and
the extracellular potential, V := Vi − Ve. Assuming a constant Cm, and as there can be no
net buildup of charge on either side of the membrane, the circuit balance implies that

Cm
dV

dt
+ Iion(V, t) = 0. (1)

Note that we have assumed that the ionic current in general depends on the potential dif-
ference V and time t, where the latter is due to possible external inputs, i.e forcing, which
we will study below.

Squid giant axon

In the squid giant axon (and in many neural cells, but Hodgkin and Huxley were using this as
their data source), the principle ionic currents are generated by the flow of sodium Na+ and
potassium K+, while all other small currents (primarily Cl−) are combined into the leakage
current. Indeed, the previous circuit can be expanded to account for these different sources
of Iion as below:

Note that each ion channel is viewed as a resistor, with voltage drop V −Vi and conductance
gi, for i = Na,K,L. Recall that resistance and conductance are inverses of one another, as C =
1
R

. Furthermore, writing the circuit in parallel assumes linearity, which is an assumption,



chosen because there was experimental evidence. Such a choice should not be expected to
hold in general. Thus, using the basic relation I = V

R
, equation (1) can be written as

Cm
dV

dt
= −gNa(V − VNa)− gK(V − VK)− gL(V − VL) + Iin(t), (2)

where Iin(t) is the input current from other cells, and we view as external for this model.

1. Assume that the external current Iin(t) is constant, i.e. Iin(t) ≡ I, AND that all
conductances are constant. Describe the dynamics of the first-order ODE (2) for the
potential V . That is, qualitatively describe the solution curves, and provide any plots which
you find helpful. Note that you should provide mathematical justification, and that you
should be as precise as possible.

Non-constant conductance

It is experimentally observed that your result from question 1 is observed, at small ap-
plied currents I. However, at larger applied currents, the result is quite different, and thus
implies that the conductances appearing in equation (2) cannot be constant. To describe
the complete picture would take me too far astray, but the idea of Hodgkin and Huxley was
to add gating variables m,n, and h which themselves are described via ODEs. One should
think of these as probabilities, describing the likelihood of the ionic gate of being either
“open” or “closed.” The full model is then a system of four ODEs:

Cm
dV

dt
= −gNam

3h(V − VNa)− gKn4(V − VK)− gL(V − VL) + Iin(t)

dm

dt
= (1−m)αm(V − V0)−mβm(V − V0)

dn

dt
= (1− n)αn(V − V0)− nβn(V − V0)

dh

dt
= (1− h)αh(V − V0)− hβh(V − V0),

(3)

where the αi, βi, for i = m,n, h are also functions of the potential difference V − V0, and
chosen to match experimental data:

αm(V ) =
2.5− 0.1V

e2.5−0.1V − 1

βm(V ) = 4e−
V
18

αn(V ) =
0.1− 0.01V

e1−0.1V − 1

βn(V ) =
1

8
e−

V
80

αh(V ) = 0.07e−
V
20

βh(V ) =
1

e3−0.1V + 1

(4)



The parameter V0 is the equilibrium potential, and is taken as V0 = −65 mV. Other param-
eter values (in appropriate units) are fixed as gNa = 120, gK = 36, gL = 0.3, Cm = 1, VNa =
50, VK = −77, and VL = −54.4.

We will now investigate the dynamics of system (3), for various signaling input Iin(t).
Note that the system is nonlinear, so your results from Chapter 3 and 4 do not necessarily
hold. Our main interest will be in connection to Chapter 4, and to how external input may
influence dynamics. Also, the system is of course four dimensional, and although qualitative
techniques are similar to those you have studied for 2D systems, we will focus on numerical
simulations for the remainder of the assignment.

Numerical simulations

We now solve the system (3) using MATLAB, and study voltage responses to different inputs
signals Iin.

2. Consider first a constant input signal, Iin(t) ≡ I. Run the m-file hh const.m for the I
values I = 0, 5, 10. Include temporal plots of the voltage response V (t) for all I values. How
does this response change as I is increased? How does this compare with your answer to
question 1? What qualitative difference do you observe as I is increased?

3. We now consider the response of the neuron (i.e. the model) to a discrete temporal
signal. That is, what happens with an input signal of the form shown below?



Run the file hh pulse.m for pulses of different magnitude, keeping the time interval when the
pulse is activated fixed for t ∈ [50, 51]. Note in particular the change in response for magni-
tudes between 6.9µA and 7µA. How does the response change for a pulse magnitude greater
than 7µA? And how do you think this might relate signaling in cells (again, specifically
neurons)? Be sure to include relevant V (t) plots to support your arguments.


