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Review of linear algebra

These notes discuss the most basic facts about linear algebra. All the material is
covered in the Rutgers course Math 250, Introduction to Linear Algebra, and we will not
go over it again in Math 252, but I hope that it will be helpful to have a brief summary
here.

1. Systems of linear equations

Suppose we are given a system of m linear equations in n unknowns x1, . . . , xn:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

...
...

...
...

...
am1x1 + am2x2 + · · · + amnxn = bm

(1)

To write this in a more compact form we introduce a matrix and two vectors,

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn









, b =









b1

b2

...
bm









and x =













x1

x2

x3

...
xn













,

so that (1) becomes Ax = b. In the next section we turn to the problem of determining
whether or not the system has any solutions and, if it does, of finding all of them. Before
that, however, we make some general comments on consequences of linearity for the nature
of solutions. As we develop the theory of linear systems of ODEs we will see results that
are completely parallel to the results here for systems of linear equations.

The homogeneous problem. Suppose first that the system (1) is homogeneous, that
is, that the right hand side is zero, or equivalently that b1 = b2 = · · · = bm = 0 or b = 0:

Ax = 0. (2)

Suppose further that we have found, by some method, two solutions x1 and x2 of the
equations; this means that Ax1 = 0 and Ax2 = 0. Then for any constants c and d,
x = cx1 + dx2 is also a solution, since

Ax = A(cx1 + dx2) = cAx1 + dAx2 = c · 0 + d · 0 = 0.

The argument extends to any number of solutions, and we have the

Principle 1: The linearity principle. If x1, x2, . . . , xk are all solutions of (2),
and c1, c2, . . . , ck are constants, then

x = c1x1 + c2x2 + · · ·+ ckxk (3)

is also a solution of(2).
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The name of this principle is related to the fact that (3) is called a linear combination (and
sometimes, particularly by physicists studying quantum mechanics, a linear superposition)
of the solutions x1, . . . ,xk. We will see later (see Principle 3 (iii) on page 8) that there is a
special value of k such that (a) we can find a set of solutions x1, . . . ,xk with the property
that every solution of (1) can be built as a linear combination of these solutions, and (b) k
different solutions are really needed for this to be true.

Notice also that the homogeneous system always has at least one solution,
the zero solution x = 0, since A0 = 0.

The inhomogeneous problem. Consider now the case in which the system (1) is inho-

mogeneous, that is, b is arbitrary. Suppose again that we are given two solutions, which
we will now call x and X, so that Ax = b and AX = b. Then xh = x−X is a solution of
the homogeneous system (2), since

Axh = A(x− X) = Ax− AX = b − b = 0.

This means that if we know one solution of our equations, X , then every other solution is
obtained by x = X + xh. The converse also holds:

Principle 2: Extended linearity principle. Every solution x of the system of
inhomogeneous equations (1) is of the form x = X+xh, where X is some particular

solution of the system, and xh is a solution of the corresponding homogeneous
system. Moreover, every vector of the form x = X + xh is indeed a solution.

In particular, if x1, . . . ,xk are the special solutions of the homogeneous equation referred
to above and in Principle 3 (iii), then every solution x of (1) is of the form

x = X + c1x1 + c2x2 + · · ·+ ckxk. (4)

2. Row reduction and row-echelon form

The key technique that we will use for solving linear equations, and also for investi-
gating general properties of the solutions, is the reduction of a matrix to row-echelon form

or to reduced row-echelon form by the use of elementary row operations, a procedure often
called row reduction or Gaussian elimination. Symbolically, if A is a matrix, we have

elementary
row

A −−−−−−−−−−−−−−−→ R
operations

where R is in row-echelon or reduced row-echelon form. What does this all mean?

Row-echelon form: The matrix R is in row-echelon form (REF) if it satisfies three
conditions:

(i) All nonzero rows (that is, rows with at least one nonzero entry) are above any zero
rows (rows with all zeros).
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(ii) The first nonzero entry in any nonzero row is a 1. This entry is called a pivot.

(iii) Each pivot lies to the right of the pivot in the row above it.

Here is a typical matrix in row-echelon form:

R =















0 1 3 −2 3 5 0 12
0 0 0 1 −2 0 −15 5
0 0 0 0 0 1 −7 0
0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















(5)

The pivots are the entries, all with value 1, shown in boldface.

Warning: The text by Spence, Insel and Friedberg, used in Math 250, has a different
definition of row-echelon form: the pivots are the first nonzero entries in the nonzero rows,
but they are not required to have value 1. Unfortunately, both definitions are in common
use.

Reduced row-echelon form: It is sometimes convenient to carry the reduction further,
and bring the matrix into reduced row-echelon form (RREF). This form satisfies conditions
(i)–(iii) above, and also

(iv) All matrix entries above a pivot are zero.

When the matrix R of (5) is put into reduced row-echelon form, it becomes

R′ =















0 1 3 0 −1 0 0 2
0 0 0 1 −2 0 0 65
0 0 0 0 0 1 0 28
0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















One advantage, more theoretical than practical, is that the RREF of a matrix A is unique—
whatever sequence of row operations is used to go from A to R, with R in RREF, the
resulting R will be the same.

Elementary row operations: There are three elementary row operations on matrices:

R1. Interchange of two rows.

R2. Multiplication of a row by a nonzero scalar.

R3. Addition of a multiple of one row to another row.

By using these operations repeatedly we can bring any matrix into row echelon form. The
procedure is illustrated on the next page.

Rank: If you do the row operations in different ways you can arrive at different REF
matrices R from the same starting matrix A. However, all the REF matrices you find will
have the same number of nonzero rows. The number of nonzero rows in R is called the
rank of A, and written rank(A) (it is also the rank of R, since R is already in REF).
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Example 1: Row reduction

Here we carry out the reduction of a 3×4 matrix first to row-echelon, and then to
reduced row-echelon, form. We indicate the row operations used by a simple notation:
ri denotes the ith row of the matrix, and the row operations are denoted by ri ↔ rj

(interchange rows i and j), ri → c ri (multiply row i by the scalar c), and ri → ri +c rj

(add c times row j to row i). Notice that in the first step we must switch the first row
with another: because the first column is not identically zero, the first pivot must be
in the upper left corner, and we need a nonzero entry there to get started.





0 −3 −1 1
1 2 3 0
2 2 5 −3





r1 ↔ r2−−−−−−−−−−−−−−→





1 2 3 0
0 −3 −1 1
2 2 5 −3





r3 → r3 − 2 r1−−−−−−−−−−−−−−→





1 2 3 0
0 −3 −1 1
0 −2 −1 −3





r2 → −(1/3) r2
−−−−−−−−−−−−−−→





1 2 3 0
0 1 1/3 −1/3
0 −2 −1 −3





r3 → r3 + 2 r2
−−−−−−−−−−−−−−→





1 2 3 0
0 1 1/3 −1/3
0 0 −1/3 −11/3





r3 → −3 r3−−−−−−−−−−−−−−→





1 2 3 0
0 1 1/3 −1/3
0 0 1 11





This completes the reduction of A to row-echelon form. If we like, we can

continue the process and reach reduced row-echelon form:

r1 → r1 − 3 r3

r2 → r2 − (1/3) r3
−−−−−−−−−−−−−−→





1 2 0 −33
0 1 0 −4
0 0 1 11





r1 → r1 − 2 r2−−−−−−−−−−−−−−→





1 0 0 −25
0 1 0 −4
0 0 1 11





The extra steps for the reduction to reduced row-echelon form could also have been
done at the same time as the earlier steps; for example, at the fourth step above, when
we did r3 → r1 + 2 r2, we could also have done r1 → r1 − 2 r2 to leave the pivot as the
only nonzero entry in column 2.
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In the rest of these notes it is assumed that the reader knows what the row-echelon
form and reduced row-echelon forms are and, given a matrix A, knows how to reduce it
to row-echelon form and/or reduced row-echelon form. Please review the definitions
above and the procedure outlined in Example 1 to be sure that these concepts
are clear.

3. Solving systems of linear equations

Suppose now that we are given the system of linear equations (1) and want to deter-
mine whether or not it has any solutions and, if so, to find them all. The idea is to solve
(1) by doing elementary operations on the equations, corresponding to the elementary row
operations on matrices: interchange two equations, multiply an equation by a nonzero
constant, or add a multiple of one equation to another. What is important is that these
operations do not change the set of solutions of the equations, so that we can reduce the
equations to simpler form, solve the simple equation, and know that we have found the all
solutions of the original equations, but no extraneous ones. Moreover, instead of working
with the equations, we can work with the augmented matrix:

(A |b) =









a11 a12 · · · a1n | b1

a21 a22 · · · a2n | b2

...
...

...
... |

...
am1 am2 · · · amn | bm









.

(It is not really necessary to write the vertical bars here, but they remind us that the
last column plays a special role.) Simplifying the original set of equations is equivalent to
reducing the augmented matrix to REF or RREF. Once this is done, we can easily find
the solutions explicitly, if there are any. Equally important, just by looking at the REF or
RREF we can determine whether solutions exist and, if so, many of their properties. We
will write this symbolically as

elementary
row

(A |b) −−−−−−−−−−−−→ (R | e)
operations

The entire new augmented matrix (R | e) is supposed to be in REF; this means that we
have also reduced A to the REF matrix R.

Example 2: Suppose we want to solve the equations

−3x2 − x3 = 1

x1 + 2x2 + 3x3 = 0 (6)

2x1 + 2x2 + 5x3 = −3

The augmented matrix is the one we studied in the example in Example 1, so we already
know a row-echelon form for it:

(A |b) =





0 −3 −1 1
1 2 3 0
2 2 5 −3



 −→





1 2 3 0
0 1 1/3 −1/3
0 0 1 11



 = (R | e).
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The REF corresponds to the equations

x1 + 2x2 + 3x3 = 0

x2 + (1/3)x3 = −1/3 (7)

x3 = 11

These may be solved by the process of “back substitution”: solve first for x3, substitute
that value into the previous equation and solve for x2, then substitute both values into the
first equation to find x1:

x3 = 11, x2 = −1/2 − (1/3)x3 = −4; x1 = −2x2 − 3x3 = −25, so x =





−25
−4
11



 .

Notice that in this example the equations have a solution, and it is unique.
If we had used the reduced row-echelon form (which we also found in Example 1) we

would have found the solution more quickly:

(A |b) =





0 −3 −1 1
1 2 3 0
2 2 5 −3



 −→





1 0 0 −25
0 1 0 −4
0 0 1 11



 = (R′ | e′ ).

The work we did in the first method, doing back substitution, is equivalent to the extra
steps used to find the RREF in Example 1. Technically the first procedure—solving the
system by finding the REF, then using back substitution—is called Gaussian elimination,
and the second procedure is called Gauss-Jordan elimination, but we will not make this
distinction, referring to either simply as Gaussian elimination.

In the next examples we will omit the step of row reduction and start with a matrix
in reduced row-echelon form. We choose RREF because that makes the calculations some-
what simpler, but none of our conclusions would be different if we had used REF and back
substitution.

Example 3: Suppose that the RREF form of the augmented matrix is

(R | e) =





1 2 0 1 | 5
0 0 1 3 | 2
0 0 0 0 | 1



 .

The last equation here is 0 = 1 , which clearly has no solutions: it expresses a contradiction.
This is the signal that our original equations have no solutions. Notice that one way to say
what has happened here is that the rank of R, which is 2, is less than the rank of (R | e),
which is three. In general, we will have no solution precisely if rank(R) < rank(R | e).

Example 4: Suppose that the RREF form of the augmented matrix is

(R | e) =





0 1 2 0 1 | 5
0 0 0 1 3 | 2
0 0 0 0 0 | 0



 .

6
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Now the idea is to solve for the variables x2 and x4, the variables for the columns containing
pivots, in terms of the other variables, which are treated as parameters. To remind us that
we are treating these variables as parameters, we will give them new names: α = x1,
β = x3, and γ = x5. then our solution is

x1 = α, x2 = 5 − 2β − γ, x3 = β, x4 = 2 − 3γ, x5 = γ.

In vector form,

x =











α
5 − 2β − γ

β
2 − 3γ

γ











=











0
5
0
2
0











+ α











1
0
0
0
0











+ β











0
−2
1
0
0











+ γ











0
−1
0
−3
1











. (8)

Here we have three parameters, one for each column of R which does not contain a pivot.
There are n = 5 unknowns and r = rank(R) = 2 pivots, and subtracting these numbers
indeed gives n − r = 3 free parameters.

The pattern here is quite general. A solution will exist if rank(R) = rank(R | e), and
it will have the general form

x = X + c1x1 + c2xx + · · ·+ ckxk.

The free parameters c1, . . . ck are just the original unknowns corresponding to the columns
without pivots. Since there are r = rank(R) = rank(A) pivots there will be n − r free
parameters in the solution (that is, k = n− r). Since we can choose the parameters freely,
we can take c1 = c2 = · · · = ck = 0 and we thus find that X itself a solution. This is
the particular solution we discussed in Section 1. If we consider now the homogeneous
problem—the same equations, but with b = 0—then we will also have e = 0, and by
looking at (8) we can see that we will have x = c1x1 + c2xx + · · · + ckxk with the same

vectors x1, . . . ,xk; this means that we have recovered (4).
We summarize in Principle 3 on page 8.

4. The case of n equations in n unknowns

Probably the most common systems of linear equations have the same number of
equations as unknowns—say n equations in n unknowns. The coefficient matrix A is then
square, with n rows and n columns. In this case there is a connection between the questions
of whether a solution exists, and whether a solution which does exist is unique. As we
shall see, one of two things may happen. Suppose that the augmented matrix has been
reduced to RREF (R | e).

Case 1: rank(A) = n. Since R is an n × n matrix in RREF with no zero rows, it must
be the identity matrix, so that (R | e) = (I | e). The corresponding equations x1 = e1,
x2 = e2, . . . , xn = en will have a solution x = e no matter what e is, and hence no matter
what the original b was; moreover, the solution is clearly always unique.

7



640:252:04 REVIEW OF LINEAR ALGEBRA SPRING 2014

Principle 3: Solving linear equations. Suppose that the augmented matrix
(A |b) is reduced to the REF or RREF (R | e). Then:

(i) If rank(R) < rank(R | e), so that the last nonzero equation is 0 = 1, then the
equations have no solutions. This cannot happen if the system is homogeneous.

(ii) If rank(R) = rank(R | e) then the equations have at least one solution. Write
r = rank(R) = rank(A); then the solution is unique if n = r, i.e., if every column in
R has a pivot. Otherwise, the equations have a family of solutions with k = n − r
free parameters. The general solution may be written in the form

x = X + c1x1 + c2xx + · · ·+ ckxk, (9)

where X is a particular solution, c1, . . . , ck are the parameters, and x1, . . . ,xk are
solutions of the homogeneous equations Ax = 0. The specific solutions are found
by solving the reduced equations for the variables corresponding to the columns
with pivots in terms of the other variables, which become the parameters.

(iii) The homogeneous system always has at least one solution: x = 0. This is the
trivial solution. The system has nontrivial solutions if and only if there are columns
in R which do not contain pivots, that is, if and only if r < n. The general solution
of the homogeneous equation is of the form

x = c1x1 + c2xx + · · · + ckxk, (10)

with k = r − n.

Case 2: rank(A) < n. In this case, the last row of R is a zero row. This means that for
some choices of b, the right hand side of the original equations, the vector e can have one
more nonzero component than there are nonzero rows in R, i.e., that the equations will
have no solution for some b. On the other hand, if a solution does exist, then because
there is a column without a pivot, our solution method will lead to a solution with at least
one free parameter—that is, any solution that does exist will not be unique. We have:

Principle 4: n equations in n unknowns. If A is a square matrix then the
system of equations Ax = b either has a unique solution for every b (Case 1), or
fails to have a solution for some b, and never has a unique solution (Case 2).

Note, for example, that if we know that for some b the system Ax = b has a unique
solution, then we must be in Case 1 and we immediately know that it has a solution, and
in fact a unique solution, for every b. Note also that the homogeneous system Ax = 0 can
have a nontrivial solution only in Case 2, that is, if and only if rank(A) = 0.

There is another way to distinguish between Case 1 and Case 2 which we will use but
not prove: we are in Case 1, that is, rank(A) = n, only if the determinant of A,
det(A), is not zero.

8
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Much more can be said in Case 1. Suppose that we are in this case, i.e., that rank(A) =
n. Let us define the vectors u1, . . . , un to be the columns of the n × n identity matrix:

u1 =













1
0
0
...
0













, u2 =













0
1
0
...
0













, u3 =













0
0
1
...
0













, . . . , un =













0
0
0
...
1













,

We know that the system Ax = ui has a unique solution, which we will call vi, that
is, Avi = ui. Now consider a matrix B with columns v1, . . . ,vn: B = (v1 v2 · · · vn).
Because of the definition of matrix multiplication, if we compute AB we just multiply each
column of B by the matrix A: thus

AB = (Av1 Av2 Av3 · · · Avm) = (u1 u2 u3 · · · un) = I.

Now we say that an n × n matrix A is invertible if it has an inverse: a matrix A−1

such that AA−1 = A−1A = I (A−1 must necessarily also be n × n). We want to show
that if A falls under Case 1 then it is invertible and the matrix B found above is A−1.
To do so we observe that B also falls under Case 1, since if x is a vector with Bx = 0
then x = Ix = ABx = A0 = 0, so that the equations Bx = 0 have a unique solution.
But then by the argument above there is a matrix C with BC = I, and then we have
A = AI = ABC = IC = C, so BA = BC = I and with AB = I this shows that B = A−1.
It is also clear that if A is invertible then it must fall under Case 1, since the equations
Ax = b have a solution x = A−1b for any b.

These ideas also tell us how to compute A−1. First, how do we find vi? We do
Gaussian elimination on the augmented matrix (A |ui ), and vi, the solution, will just be
the last column of the result, that is, the row reduction will be (A |ui ) → (I |vi ). Doing
all these different problems to find all the vi is a terrible duplication of effort, however, so
we do them all at once:

(A|u1 u2 · · ·un) → (I|v1 v2 · · ·vn) or equivalently (A | I ) → (I |A−1 ).

In general this is the simplest method of computing A−1 when one is given a specific
numerical matrix A.

We can conclude that if A is a square matrix then any one of the following conditions
is enough to guarantee that we are in Case 1, and hence that in fact all the conditions
hold:

C1: The system Ax = b has a solution for every b.

C2: Whenever the system Ax = b has a solution, the solution is unique.

C3. The homogeneous system Ax = 0 has only the trivial solution x = 0.

C4: rank(A) = n

C5: A has an inverse matrix A−1 satisfying AA−1 = A−1A = I.

C6: The reduced row-echelon form of A is the identity matrix I.

C7: The determinant of A is not zero.

9
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5. Linear independence of vectors

Suppose we are given k vectors x1, x2, . . . , xk, these might be either row or column
vectors, but they are all one or the other, and they all have the same number of components.
To be specific we will think of them as column vectors belonging to the space R

n of all
column vectors with n components. We then ask the question: can any one of these vectors
be expressed as a linear combination of the remaining ones? If so, the vectors are linearly

dependent, if not, they are linearly independent.

Example 5: (a) The vectors x1 =

(

1
0

)

, x2 =

(

0
1

)

, and x3 =

(

3
−2

)

, all of which

belong to R
2, are linearly dependent, since x3 can be expressed as a linear combination of

x1 and x2: x3 = 3x1 − 2x2,

(b) The vectors x1 =





1
0
0



, x2 =





0
1
0



, and x3 =





0
0
1



, from R
3, are linearly

independent. For example, we cannot write x1 = ax2 + bx3 no matter how we choose a

and b, since ax2 + bx3 =





0
a
b



 has first component 0, and x1 has first component 1.

(c) The vectors x1 =







1
5
−3
2






, x2 =







0
0
0
0






, and x3 =







7
−1
2
0






, from R

4, are linearly

dependent, since x2 = 0x1 +0x3. Clearly, any set of vectors in which one vector is 0 must
be linearly dependent, by the same reasoning.

There is another way to describe linear dependence: the vectors x1, x2, . . . , xk are
linearly dependent if there exist scalars c1, . . . , ck, not all zero, such that

c1x1 + c2x2 + · · ·+ ckxk = 0. (11)

The restriction that not all the ci be zero is important, since we could always make (11)
true by taking c1 = c2 = · · · = ck = 0. This new definition of linear dependence is the
same as our original definition. For if the vectors are linearly dependent according to our
first definition then one of them, say x1, can be expressed as a linear combination of the
others: x1 = d2x2 + d3x3 + · · · + dkxk; but then

x1 − d2x2 − d3x3 − · · · − dkxk = 0,

which shows that (11) holds with the coefficients ci not all zero (since c1 = 1). Conversely,
if (11) holds with some coefficient not zero—say, c1 6= 0—then we can solve the equation
for x1, expressing it as a linear combination of the others:

x1 = −

(

c2

c1

)

x2 − · · · −

(

ck

c1

)

xk,

10



640:252:04 REVIEW OF LINEAR ALGEBRA SPRING 2014

so that the vectors are linearly dependent by our first definition.
How can we determine if the vectors x1, . . . ,xk are linearly dependent or linearly

independent? Here is one way. Suppose that these are column vectors with n components,
and build a matrix A with these vectors as columns: A = (x1 x2 . . . xk). The matrix A is

n × k. To say that (11) holds is just to say that Ac = 0, where c =





c1

...
ck



. This means

that x1, . . . ,xk are linearly dependent—i.e., that (11) holds with the ci not all zero—if the
system of equations Ac = 0 has a nontrivial solution for c. One can determine whether or
not it does by reducing A to REF or RREF.

Finally, suppose we have n vectors, each with n components, and want to know if they
are linearly independent. Then the matrix A is an n× n square matrix, and we can study
it via the ideas of the previous section. The system Ac = 0 has no nontrivial solution if
and only if we are in Case 1 (this is condition C3 for being in case 1), i.e., if the matrix A
satisfies any of the conditions C1–C7. Note that this means that we could add another
condition to the list C1–C7, equivalent to all the rest:

C8. The columns of A are linearly independent vectors.

We summarize:

Principle 5: Linear independence. The vectors x1, . . . ,xk are linearly depen-
dent if the system of equations Ac = 0, where A = (x1 x2 . . . xk), has a nontrivial
solution. The vectors are linearly independent if the system Ac = 0 has only the
trivial solution c = 0. If k = n and the vectors are column vectors with n compo-
nents, then they are linearly independent if and only if the matrix A satisfies any
of the conditions C1–C7 of Section 4.

Remark 1: In Principle 3 on page 8 we found that k = n − rank(A) = n − r vectors are
needed to express every solution of the equations Ax = b, and observed that row reduction
produced the needed vectors x1, . . . ,xk. We want to observe here that these k vectors are
linearly independent. To see this, consider Example 4 and form a linear combination
of the vectors x1,x2,x3 produced there:

c1x1 + c2x2 + c3x3 = c1











1
0
0
0
0











+ c2











0
−2
1
0
0











+ c3











0
−1
0
−3
1











=











c1

−2c2 − c3

c2

−3c3

c3











.

By looking at the first, third, and fifth components of the final form of this vector we see
that if c1x1 +c2x2 +c3x3 = 0 then necessarily c1 = c2 = c3 = 0, and this is precisely linear
independence of x1,x2, and x3. The pattern is the same for any system Ax = b.
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