Matlab Assignment \#7

The Piano and the Violin

Refer to the file ExampleSound.m for this Matlab assignment. Your answers should be accurate to 3 significant figures. For any Matlab plot you submit, use the function title to give the plot a title name which identifies which problem number. For questions which ask you to play sounds with Matlab, you do not need to turn in any sound files.

Sound travels through the air as compression waves. In music, the note A above middle C is usually tuned to the frequency to 440 Hz . A Hertz is one cycle per second, and is abbreviated as Hz . To designate octaves, these notes are referred to as A_{4} and C_{4}. The note A_{0} is the lowest key on the piano, and C_{8} is the highest key on the piano.

One note is said to be an octave above the other if its frequency is twice that of the first. For example, the note A_{5} is one octave above A_{4} and its frequency is $2 \times 440=880 \mathrm{~Hz}$. The note A_{6} is two octaves above A_{4} and its frequency is $2^{2} \times 440=1760 \mathrm{~Hz}$.

One note is said to be a perfect fifth above the other if its frequency is $\frac{3}{2}$ times that of the first. The note E_{5} is a perfect fifth above A_{4} and its frequency is $\frac{3}{2} \times 440=660 \mathrm{~Hz}$. Also, the note B_{5} is two perfect fifths above A_{4}, and its frequency is $\left(\frac{3}{2}\right)^{2} \times 440=990 \mathrm{~Hz}$.

There are 12 notes, or semitones, in an octave, and there are 7 semitones in a perfect fifth. Pythagorean tuning determines the frequency of each note in the scale using only the ratios of $2: 1$ from octaves and 3:2 from perfect fifths.

Figure 1: The keys of a piano

1. Unfortunately, the Pythagorean method of tuning runs into some problems. Compute the frequency ω_{1} of the note A_{7} from being 7 octaves above A_{0}. (Hint: Since the frequency of A_{4} is 2^{4} times the frequency of A_{0}, it follows that the frequency of A_{0} is $440 / 16=27.5$ Hz . Now compute the frequency of A_{7}.)
2. Use the Pythagorean method of tuning to compute the frequency ω_{2} of A_{7} from being 12 perfect fifths above A_{0}. (Hint: Your answers in questions \#1 and \#2 should NOT match. They will be off by about 1.36%)
3. If the two notes A_{7} from questions $\# 1$ and $\# 2$ were played at the same time, their combined sound could be modeled by the function $f(t):=\sin \left(2 \pi \omega_{1} t\right)+\sin \left(2 \pi \omega_{2} t\right)$. For the function $f(t)$:
(a) Calculate the beating frequency of the function $f(t)$ (Hint: For calculating beating frequency, see Section 4.3 in the book
(b) Plot the function over the time $0 \leq t \leq 1$.
(c) Use soundsc to listen to the function $f(t)$.

In order to correct for this problem, other methods of tuning were invented, such as Ptolemaic tuning, and the meantone temperament. The equal temperament system of tuning was independently invented in China and in Europe during the $16^{t h}$ century, and is commonly used today.

In equal temperament, the frequencies of the 12 notes in an octave are equally spaced - in a logarithmic sense. That is, there is a fixed constant γ such that a note N semitones above A_{4} has a frequency of $\gamma^{N} \times 440 \mathrm{~Hz}$. Since A_{5} is both an octave above A_{4} and 12 semitones above A_{4}, then in order for the frequency of A_{5} to be twice that of A_{4}, this forces $\gamma^{12} \times 440=2 \times 440$, or $\gamma=\sqrt[12]{2}$.

While modern pianos use equal temperament, violins often use Pythagorean tuning. Unless corrected for this can cause a small amount of dissonance.
4. Suppose a pianist and a violinist both play the note E_{5}. After the piano hits its strings, the note begins to fade, however the violinist continues to bow her string. The violin produces a sound with frequency is $\frac{3}{2} \times 440 \mathrm{~Hz}=660 \mathrm{~Hz}$. The natural frequency of the piano's string is $\left(2^{1 / 12}\right)^{7} \times 440 \mathrm{~Hz}$. The position of the pianist's string is approximately given by the following differential equation:

$$
y^{\prime \prime}+0.35196 y^{\prime}+17158003.5 y=\sin (2 \pi 660 t)
$$

(Remark: While the constants above are not entirely physical, the constants were chosen so that the system would be underdamped and the natural frequency would be close to $\left(2^{1 / 12}\right)^{7} \times 440 \mathrm{~Hz}$.
(a) Find the general solution to the problem.
(b) Solve the IVP with $y(0)=10^{-4}$ and $y^{\prime}(0)=0$.
(c) Graph your solution over the range $0 \leq t \leq 20$.
(d) Listen to your solution using soundsc.
5. The note C_{5}^{\sharp} is a major third above A_{4}, or plus four perfect fifths and minus two octaves. In Pythagorean tuning, if A_{4} is 440 Hz , then C_{5}^{\sharp} has a frequency of $\omega_{1}=(3 / 2)^{4} \times(1 / 2)^{2} \times 440$. Since C_{5}^{\sharp} is 4 semi-tones above A_{4}, then in equal temperament, C_{5}^{\sharp} has a frequency of $\omega_{2}=$ $\left(2^{1 / 12}\right)^{4} \times 440 \mathrm{~Hz}$.

Suppose that a pianist and a violinist both play the note C_{5}^{\sharp} at the same time. For simplicity, we can suppose that the piano string does not have any damping. The piano string can then be modeled by the following differential equation:

$$
y^{\prime \prime}+\left(2 \pi \omega_{2}\right)^{2} y=\sin \left(2 \pi \omega_{1} t\right)
$$

(a) Find the general solution to the problem
(b) Solve the IVP with $y(0)=10^{-5}$ and $y^{\prime}(0)=0$.
(c) Calculate the beating frequency.
(d) Graph your solution over the range $0 \leq t \leq 2$.
(e) Listen to your solution using soundsc.

