\qquad

MATLAB Assignment \#1

Slope Fields and Euler's Method

1. For the following differential equations

$$
\begin{align*}
y^{\prime}(t) & =\cos (y)+\sin (t) \tag{1}\\
y^{\prime}(t) & =y *(2-y) \tag{2}
\end{align*}
$$

a) Modify the function $F . m$ in MATLAB to match the given differential equation above.
b) Use the file ExampleSlopeField.m to generate a slope field of the differential equation, and print out your figure. Constrain the dimensions of your plot to be $-4 \leq y \leq 4$ and $-4 \leq t \leq 4$ and the spacing between the slope lines should be 0.5 .
c) On your printed out slope field, sketch the solution of the differential equation at the following points:

1. $\left(y_{1}, t_{1}\right)=(-2,-1.5)$
2. $\left(y_{2}, t_{2}\right)=(-1,-0.5)$
3. $\left(y_{3}, t_{3}\right)=(0,4)$
d) For each of the initial points above, continue the solution curve backwards in time to see where the initial point originated from.
4. Below is a slope field for the differential equation $y^{\prime}(t)=y * \sin (t * \pi / 2)$.

a) Modify the function $F . m$ in MATLAB so that it is defined as $F(t, y):=y * \sin (t * \pi / 2)$. Use this function in the command window to help you compute Euler's method for 6 steps starting at $\left(y_{0}, t_{0}\right)=(1,0)$ with step size 1 . Plot your result on the graph above.

k	t_{k}	y_{k}	$f\left(t_{k}, y_{k}\right)$
0			
1			
2			
3			
4			
5			
6			

b) Modify the ExampleEuler.m file so that you numerically integrate the initial condition $\left(y_{0}, t_{0}\right)=(1,0)$ until time $t=25$. Do this for step sizes $0.5,0.1$ and 0.01 .
c) For each of the step sizes, what is the value Euler's method produces for $y(25)$? Include three significant digits. What pattern do you notice?

