
Tutorial 1: Getting Started 

This first tutorial will lead you through the basics of how to use this program. The second tutorial 

explains three ways in which you can modify the program to obtain more accurate persistence 

diagrams. The third tutorial shows you how to graph persistent diagrams corresponding to 

filtrations induced by both the sub-level sets and super-level sets of the primary function. In the 

fourth and last tutorial we show you how to define a new primary function. If you have 

Mathematica 10 then you can follow along with the Tutorial.nb file. 

Compiling Tutorial.cpp 
Before starting this tutorial, please refer to the “Computer Requirements” section in the ReadMe 

file, to ensure that you have downloaded all of the requisite compilers, libraries, and software.  

  

In the folder you have downloaded, you should have all the following source code files: 

 CApproximation.h, CApproximation.cpp 

 CBasicPolynomial.h, CBasicPolynomial.cpp 

 CComplex.h, CComplex.cpp 

 CCube.h, CCube.cpp 

 CFiltration.h, CFiltration.cpp 

 CNode.h, CNode.cpp 

 CPolynomial.h, CPolynomial.cpp 

 SFace.h 

 SGeometricCube.h 

 

Additionally, you should find the file Tutorial.cpp. Open up Tutorial.cpp in your favorite source 

code editor and then we may begin! 

 

The Tutorial.cpp file includes all of the above mentioned *.cpp files, which in turn include all of 

the other structures and libraries needed by this program.  One header file we need is 

…/boost/numeric/interval.hpp from the Boost library. After you’ve downloaded the Boost library, 

place the library in a directory which your compiler searches for header files. If you are using the 

gcc compiler from the command line, go to the directory containing the Tutorial.cpp file and 

type: 

g++ Tutorial.cpp -o tutorial 

If your compiler has difficulty finding your boost library, then you will need to include a path to 

the directory containing your Boost library. If you are using the gcc compiler, then you may 

compile Tutorial.cpp with a directive similar to: 

g++ -I /.../boost_1_55_0 Tutorial.cpp -o tutorial 

where /.../ is the file path to the directory containing your Boost library. 



Fabricating your First Filtration 
If you were able to compile and 

run the Tutorial.cpp file, then 

you should have obtained an 

output similar to the image to 

the right. Sometimes, we are 

not able to verify every 

threshold we test.  

Do not despair! Even if we 

cannot verify every threshold, we can still construct persistence diagrams, albeit less accurate 

ones. In Tutorial 2, we will go over several ways reduce the number of these failures and 

mitigate their effect on the accuracy of our persistence diagrams.  

 

If you obtained the output above, then you were successful in creating a filtered CW complex 

corresponding to the sub-level sets of the function defined below. Since the image of the 

function lies in the interval [-0.4,0.2] that is the range of thresholds we are interested in studying. 

 

f[x,y] = 20.0*(y+0.1)(y-0.1)*(y-0.6)*(y-.8)*(y-1.05) 

-10.0*(x+0.01)*(x-0.2)*(x-0.7)*(x-0.95) 

 

The primary way in which you modify and manipulate this program is through the Approximation 

object approx. In the Tutorial.cpp file, we called the Verified_Filtration member 

function. This uses a for loop to iterate through a series of equally spaced thresholds. For each 

threshold, it attempts to create a CW complex which is homologous to the sub/super-level set 

corresponding to that threshold. If successful, then that threshold is said to be verified.   

 

More specifically, a threshold is verified if the algorithm can construct a grid where the primary 

function is verified on every square. A square is verified if the primary function is “well behaved” 

on that square.  The algorithm determines that the function is “well behaved” if it passes one of 

several tests performed on the primary function and its partial derivatives using interval 

arithmetic.  



If a square is not verified, then it is subdivided into 4 squares with the hope that the offspring will 

be verified. This process is continued until every square in a grid is verified, or a square with 

side length smaller than 2-7 (the default value) fails to be verified. 

The square which caused the Tutorial.cpp program not to verify the threshold -0.1 had x- and y- 

coordinates [0.867,0.871]  and [0.316,0.320]. In the diagram above, you can see that this 

square is located in the bottom right quadrant, where two connected components of the sub-

level set are nearly touching. The primary function is actually well behaved on this square; the 

square’s image is strictly less than -0.1002. However the error bounds produced by using 

interval arithmetic prevent the program from knowing this. 

Calculating Persistent Homology 
Using the CW approximations corresponding to each of the verified thresholds, the program 

constructs a single filtered CW complex. The last thing the Verified_Filtration function 

does is produce an output file called FilteredComplex. This file contains the information about all 

of the cells in the filtered CW complex: what the algebraic boundary of each cell is, and when 

each cell was born. (For more information about the format of this file, refer to the description of 

the Filtration class in the Reference Guide.)  

 

To calculate the persistent homology of the filtration you created, you must process the 

FilteredComplex file with the Perseus software. The output file describes a regular CW complex, 

not a cubical complex or a simplicial complex, so you will need Version 4.1 Beta of the Perseus 

program.  

 

By now you should have compiled the Perseus software into an executable file called perseus. 

To compute the persistent homology of your filtration, run the Perseus software from the 

command line with the following directive: 

(path to perseus executable) cellcomp (path to input file)  

If you use Linux or a Mac, and the FilteredComplex file and the perseus executable are in the 

same folder, then you would type into the command line: 

./perseus cellcomp FilteredComplex  

Perseus will then produce several output files. The output_betti.txt file should look like the 

following array of numbers: 

2 2 0 0 

3 4 0 0 

5 1 1 0 

7 1 0 0 

You may refer to the Perseus website for how to interpret these output files, however the listed 

birth/death times correspond only indirectly to the actual thresholds in our filtration. In Tutorial 3 

we will discuss how to process the output files from Perseus.  

 



Note: If you wish to change the name of the file produced to something other than 

FilteredComplex, go to the file CFiltration.cpp. Inside the function “Export”, an ofstream called 

“OutFile” is created. There you can set the filename corresponding to OutFile to be whatever 

you like. 

 

Tutorial 2: Improving Accuracy 

Just like how a chain is only as strong as its weakest link, the precision of your persistence 

calculation is equal to the largest gap between verified thresholds. In the previous tutorial, the 

thresholds -0.4, -0.3, -0.2, 0.0, 0.1 and 0.2 were verified, and the threshold -0.1 was not verified. 

The largest gap between verified thresholds in this case was | -0.2 - 0.0 | = 0.2, so the 

persistence diagram we’d produce would be a bottleneck-distance of 0.2 away from the true 

persistence diagram of our primary function.  

 

More generally, if we are computing the persistence of a function and we took for our filtration a 

series of thresholds with uniform spacing ∆, then the bottleneck-distance error will be equal to 

∆ (𝐹 + 1) where F is the number of consecutive failures. There are two ways to reduce this 

error: (1) reduce the spacing between your thresholds and (2) reduce the number of 

consecutive failures.  

 

Warning: To accurately compute a function’s persistent homology, it is necessary to verify 
thresholds above its maximum as well as below its minimum. 

Shrinking Step Size 
The first way in which we will improve the accuracy of our persistence diagrams is by verifying 

more thresholds. Our function only takes values in the interval [-0.4, 0.2]. We will want to only 

test thresholds in this range, but shrink the spacing between the thresholds down to 0.01. 

 

To do this, in the “Tutorial.cpp” file, change the definition of step_size to 0.01. To have 0.2 

remain the top threshold we test, the maximum number of steps we need can be calculated as 

(0.2 - -0.4)/ 0.01 + 1 = 61. Thereby, we should change the variable max_steps to equal 61.  

 

If you then compile and run the program, about 13 thresholds will fail to be verified. Since at 

most two thresholds failed to be verified in a row, then the accuracy of our persistence diagram 

would be subject to an error of 0.03 in the bottleneck-distance. 

Increasing Maximum Subdivisions 
The next way in which we can improve the accuracy of our persistence diagrams is by allowing 

the program to use a finer resolution in constructing the discrete approximations. When the 

program verifies a given threshold, it subdivides areas of the domain where the super-level set 



is geometrically complicated. The default setting for this program is to not allow more than 7 

subdivisions of the unit square.  

 

By increasing the maximum number of subdivisions the program allows, we can enable the 

program to verify thresholds which we could not verify previously. We are going to increase the 

maximum number of subdivisions to 15. To do this, after you’ve instantiated the Approximation 

object approx and before you call the Verified_Filtration function, enter in the line of 

code:  

approx.Define_Maximum_Depth(15); 

If you then compile and run the program, about 7 thresholds will fail to be verified. Again, two 

thresholds failed to be verified in a row, so the accuracy of our persistence diagram is still 0.03. 

Improving Interval Precision 
The last way you can shrink the error of your persistence diagrams is by improving the precision 

of the interval arithmetic used by the program. The program uses a very simple preprocessing 

technique to obtain more precise bounds for its interval arithmetic.  

 

In general, using interval arithmetic to determine the value of a function on a large interval will 

produce unnecessarily large upper and lower bounds. To combat this issue, we use the fact that 

if we break the large interval into a bunch of tiny pieces, then the image of the large interval is 

equal to the union of the images of the smaller intervals. 

 

Whenever this program uses interval arithmetic to evaluate a function on a piece of the domain, 

it subdivides that piece along each coordinate axis 3 times by default. Afterwards it evaluates 

the function on each of the constituent pieces. That means that edges get divided into 23 pieces 

and squares get divided into 43 pieces. 

 

You can change the number of subdivisions the program makes by modifying the Approximation 

object. We are going to increase the number of subdivisions used in the interval arithmetic to 4. 

To do this, after you’ve instantiated the Approximation object approx and before you call the 

Verified_Filtration function, enter in the line of code:  

approx.Define_Interval_Subdivisions(4); 

If you then compile and run the program, then only one threshold should not have been verified. 

If so, then the accuracy of the persistence diagram would be subject to an error of 0.02 in the 

bottleneck-distance. 

 

Warning: Changing the interval subdivisions isn’t straight forward in how it affects the program’s 

run time. Each computation of the primary function takes longer, however larger squares may 

be verified, causing the resultant complexes to be smaller. Expect each increase in the number 

of interval subdivisions used to cause the program to run 2-4 times slower. 

  



Tutorial 3: Making Persistence Diagrams 

By now you should be able to use this program to construct a filtered CW complex and then use 

the Perseus program to compute persistence intervals. We now turn our attention to graphing 

persistence diagrams.  

Automating the Persistence Calculation 
Before we get to graphing persistence diagrams, let us first automate the process for computing 

persistent homology. If you use Linux or a Mac, then after Verified_Filtration is called in 

the Tutorial.cpp file, you should enter in the following line of code: 

system("./perseus cellcomp FilteredComplex"); 

If you use Windows, type the following: 

system("perseus cellcomp FilteredComplex"); 

If your perseus executable file is not in the same folder as the Tutorial.cpp file then you will have 

to change the file path for perseus to the correct one. 

Correcting the Persistence Intervals 
A small amount of manipulation is necessary to convert the integer output of Perseus to match 

the real thresholds you originally told this program to compute. The formula for switching 

between the integer and real birth/death times depends on whether you are using sub-level sets 

or super-level sets for your filtration. If using sub-level sets, then the following formula applies: 

Actual_Threshold = BottomThreshold +(Integer_Thresholds -1) * StepSize 

If you are using super-level sets to define your filtration, then the following formula applies: 

Actual_Threshold = TopThreshold - (Integer_Thresholds - 1) * StepSize 

 

This conversion is automated by the Approximation member function Modify_Output. This 

function reads the [ output_*.txt ] files, which the program assumes are in the same folder as the 

Tutorial.cpp file. To call this function in the Tutorial.cpp file, after the line of code which calls the 

perseus program, enter the following line of code: 

approx.Modify_Output(bottom_threshold, step_size, max_steps, sublevel); 

When you run the Tutorial.cpp file, the Modify_Output function will use the above conversion 

formulas to produce [ real_output_*.txt ] files with the real thresholds. 

Graphing Persistence Diagrams 
The process for generating persistence diagrams is largely automated in the Tutorial.nb 

Mathematica file. This file was written using version 10 of Mathematica and may not be entirely 



compatible with earlier versions. Bundled in the Perseus software package is a MATLAB script 

called Persdia which can also take the [real_output_*.txt ] files as input and produce persistence 

diagrams. 

Filtrations using sub-level sets 

Below are the persistence diagrams corresponding to the sub-level set filtration of our primary 

function. In the diagrams, the x-axis corresponds to the birth time and the y-axis corresponds to 

the death time. To read sub-level set persistence diagrams, you should read left-to-right and 

bottom-to-top. 

 

 

Filtrations using super-level sets 

 
Thus far in the tutorial we have studied filtrations of our primary function induced by sub-level 

sets. To produce filtrations using super-level sets, in the Tutorial.cpp file, change the Boolean 

variable sublevel from true to false. The resulting persistence diagrams should look like 

the image below. Again, the x-axis corresponds to the birth time and the y-axis corresponds to 

the death time. To read super-level set persistence diagrams, you should read right-to-left and 

top-to-bottom. 
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Tutorial 4: Defining a New Function 

With any likelihood, you did not download this program to extensively study the persistent 

homology of the example function I’ve provided. You want to study your own functions! While I 

cannot anticipate the function you want to study, I can show you how to define a new primary 

function, such as the following:  

g(x,y):= 20.0*(y-0.3)* 

(y-0.7)+20.0*(x-0.1)* 

(x-0.4)*(x-0.9) 

 

This program stores information 

about the primary functions in file 

CBasicPolynomial.cpp. Despite its 

name, you can choose your primary 

function to be something other than 

a polynomial.  

 

In addition to the primary function, 

this program also needs to be told 

the partial derivatives of this function. This information is stored in the member functions value 

and derivative.  

 

To define g as our primary function, go to the value function in the CBasicPolynomial.cpp file. 

There you should change how the variable output is defined so that it looks like this: 

Interval output = 20.0*(y - 0.3)*(y - 0.7) + 20.0*(x - 0.1)*(x - 0.4)*(x - 0.9); 

Warning: The boost interval library is strongly typed. In this program, the variables x and y are 

intervals of type double, and they cannot be added to / multiplied by integers. 

 

Now we are ready to define the partial derivatives of our primary function. For this you should go 

to the derivative function. There you should change how the variables x_derivative and 

y_derivative are defined so that they look like this:  

Interval x_derivative = 20.0*((x-0.9)*(x-0.4) +(x-0.9)*(x-0.1) + (x-0.4)*(x-0.1));  

Interval y_derivative = 20.0*(y-0.7) +20.0*(y-0.3); 

Warning: The program does not have a safeguard against you entering the wrong derivative. If 

you encounter unexpected errors, one possible cause is having the wrong derivative. 


