
Reference Guide

This document summarizes each of the Classes and Structures defined in this software
package. Refer to http://www.boost.org/ for documentation on the Boost Interval library.

In order to compute persistent homology there are two main tasks: (1) testing the local
properties of the primary function and (2) manipulating the CW complexes we use to
approximate the super-level sets. The classes and structures used in this program are largely
divided between accomplishing one of these two tasks. After a brief summary of each
class/structure we present a more detailed description.

The figure above describes the dependency relationships between the various classes and structures.

Dashed arrows represent class inheritance. For the most part in the code, class names contain the prefix

“C” and the structures have the prefix “S” (i.e. the Approximation class is defined as “CApproximation”.)

Approximation

Cube

Polynomial

Basic

Polynomial

Geometric

Cube

Complex

Filtration

Node

Face

Boost

Interval

Approximation
This class is used to create discrete approximations of a function’s super-level sets and the

corresponding filtration.

Basic Polynomial
This class stores the user’s input function and calculates the value and derivative of that

function on Geometric Cubes. Despite the name, the input function does not have to be a

polynomial.

Complex
This class is a quad-tree and is used to store the discrete approximation to a super-level set of

the input function.

Cube
This class represents a 2 dimensional dyadic cube by a vector of integers. This class is used to

check whether the input function is well behaved locally, on that dyadic cube.

Face
This structure represents a single cell from a dyadic cube.

Filtration
This class is derived from the base class Complex. It represents a CW complex on the entire

unit square and is used to export a filtered algebraic chain complex.

Geometric Cube
This structure represents a 0-, 1-, or 2-dimensional dyadic cube by two Intervals. Primarily

serves as the input to the Basic Polynomial class.

Node
This class represents a 2 dimensional dyadic cube and is the building block of the class

Complex. This class stores which cells from the dyadic cube are included in the Complex and in

Filtration, they store when each cell is born.

Polynomial
This class is derived from the base class Basic Polynomial. The Polynomial class and which

improves the precision of the interval arithmetic and test whether the function’s value/derivatives

on a GeometricCube are above/below a certain value.

APPROXIMATION

STORED DATA

Maximum Depth

 Description: An unsigned integer which define the maximum number times the Verified

Approximation function is allowed to subdivide the unit cube before terminating.

Polynomial

 Description: This is the function whose persistent homology the user wishes to study.

PUBLIC FUNCTIONS

Define Interval Subdivisions

● Inputs: An unsigned integer

● Description: Defines the amount of preprocessing used in Polynomial’s interval

arithmetic.

Define Maximum Depth

● Inputs: An unsigned integer

● Description: Changes the member Maximum Depth to equal the user’s input.

Intersect Complexes

● Inputs: Two Complexes

● Outputs: None; this function modifies the second of the input complexes

● Description: Removes cells from the second complex so that it is then equal to the

intersection of the two given.

Modify Output

● Inputs: A bottom threshold (type double), a step size (type double), a maximum number

of steps (type unsigned integer) and a sub/super-level set directive (type Boole)

● Description: This function uses the output from Perseus to create analogous files with

the real-valued birth/death times corresponding to the thresholds used.

Verify Approximation

● Inputs: A Complex, a threshold (type double), and a sub/super-level set directive (Boole)

● Description: Modifies the input Complex to construct a verified approximation to the

sub/super-level set (corresponding to the input being true/false) of the Polynomial at the

given threshold.

Verify Filtration

● Inputs: A bottom threshold (type double), a step size (type double), a maximum number

of steps (type unsigned integer), a sub/super-level set directive (Boole) and a Filtration

● Outputs: Modifies the Filtration object and externally produces a text file.

● Description: Constructs a filtration corresponding to the sub/super-level sets of the

primary function. The thresholds used for the filtration start at the “bottom threshold” and

increase by the amount “step size” to include a total number of thresholds equal to the

“maximum number of steps”. For each threshold, this function runs Verify Approximation,

generating a verified Complex. After taking the appropriate intersections, it adds these

complexes to the input Filtration. Lastly, the Filtration exports a filtered chain complex.

● Note: Including from the Filtration object given to this function, Verify Filtration stores at

most three Complexes in memory at any one time.

BASIC POLYNOMIAL

PUBLIC FUNCTIONS

Value

● Inputs: Geometric Cube.

● Outputs: Interval

● Description: The function calculates the image of the polynomial on the geometric cube.

Derivative

● Inputs: Geometric Cube.

● Outputs: 2x1 vector of Intervals

● Description: The image of the polynomial’s Jacobian on the geometric cube.

COMPLEX

STORED DATA

Root

 Description: A Node representing the entire unit square and the root of the quad-tree.

PRIVATE FUNCTIONS

Infer Faces

● Inputs: A Boolean vector of length four, representing which of cube’s vertices are in the

super-level set.

● Outputs: A Boolean vector of length nine, representing the entire cube’s cells which are

included in the approximation, exactly analogous to the Faces member in the Node

class.

● Description: A cell is added to the approximation if and only if all of its vertices are in the

approximation.

PROTECTED FUNCTIONS

Redundant Cells

● Inputs: A Face

● Outputs: A vector of Faces

● Description: This function returns all of the Faces which are in the Complex and intersect

the input Face.

PUBLIC FUNCTIONS

Add Cube

● Inputs: The location of a cube (vector of unsigned integers) and which vertices of the

cube are in the approximation (length four vector of Boolean values).

● Description: This function will add a node to the complex corresponding to the input

location, and use Infer Faces to store the necessary cells.

Boundary

● Inputs: A Face and Boolean value

● Outputs: A vector of Faces

● Description: If the Boolean input is true/false, this function return all of the faces in the

boundary with a coefficient of +1 / -1.

Create CW Complex

● Description: When an approximation is initially constructed, a single point in the unit

cube may be contained in multiple cells. For each node in the complex (and each cell on

that node), this function will find the corresponding redundant cells, and will remove

which ever cells are necessary to make the resultant structure an actual CW-complex.

Obtain Carrier

● Inputs: A Face (with correct Path data; the pointer to Node doesn’t matter)

● Outputs: A vector of Faces

● Description: This function returns all of the faces in the complex which intersect a given

Face. This can be used to find the carriers of a cell from a different complex.

CUBE
STORED DATA

Location

 Description: A vector of unsigned integers which provide the location of the cube in the

class Complex.

PUBLIC FUNCTIONS

Get Geometric Representation

● Outputs: Geometric Cube

● Description: Returns the Geometric Cube corresponding to the Cube object.

Get Location

● Outputs: An vector of unsigned integers

● Description: Returns the object member “Location”.

Local Approximation

● Inputs: A polynomial and a threshold (of type double).

● Outputs: A Boolean vector (of length 4)

● Description: Calculates which of the vertices of the cube have an image above the

threshold, and therefore in the approximation.

Print

● Description: Uses std::cout to print the object member Location.

Subdivide Cube

● Outputs: A vector of 4 cubes whose geometric union equals the initial cube.

Verify

● Inputs: A Polynomial, and a threshold (of type double).

● Outputs: One of three integers with the following interpretation:

○ -1) One of the cube’s vertices had an image which was neither above nor below

the threshold.

○ 0) The cube failed to be verified.

○ 1) The cube succeeded in being verified.

● Description: Checks whether the cube is analytically verified by seeing if

○ (Verification by Sign) The image of the function on the cube is bounded away

from the threshold

○ (Strong Verification by Derivative) The image of both partial derivatives of the

function on the cube are bounded away from zero

○ (Weak Verification by Derivative) The image of one of the partial derivatives of

the function on the cube is bounded away from zero and two specific edges are

verified by sign.

FACE

STORED DATA

Path

● Description: A vector of unsigned integers which provide the location of the dyadic cube

containing the Face; analogous to the location member of the Cube class.

Pointer to Node

● Description: A pointer to the Node representing the dyadic cube which contains the face.

● Note: Both the Path member and the Pointer to Node member uniquely describe the

location of a dyadic cube in a Complex. When a Face structure is used, one of these

members will be defined, but not necessarily the other.

Face Number

● Description: An integer corresponding to one of the 9 cells in a dyadic cube. Index the

faces is given thusly:

○ The number 0 corresponds to the single 2-cell

○ The numbers 1-4 correspond to the 1-cells, ordered counter clockwise, starting

with the bottom edge

○ The numbers 5-8 correspond to the vertices, ordered as follows::

(0,0) ; (0,1) ; (1,0) ; (1,1)

PUBLIC FUNCTIONS

Birth Time

● Description: Returns when the cell was born in the Filtration.

Check Cell

● Description: Determines whether the cell is in the Complex.

Define Export Order

● Input: An Integer

● Description: Defines the order in which the cell was written to the export file to be the

user’s input.

Define Birth Time

● Input: An integer

● Description: Defines the birth time of the cell in the Filtration to be the input of the user.

Delete

● Description: Removes the given cell from the Complex.

Export Order

● Description: Returns the reference number of the cell in relation to when that cell was

written to the export file.

FILTRATION

ADDITIONAL DATA

Zero, One and Two – Cell Lists

● Description: Three vectors of Faces, which linearly store the cells of dimensions zero,

one and two in the Filtration.

PUBLIC FUNCTIONS

Add Complex

● Input: Complex, threshold (type integer)

● Description: Adds all of the cells from the complex into the filtration, at the given

threshold value, refining any cells as need be.

● Note: It is assumed that complexes will be added to the filtration in increasing order of

real thresholds. Since the super-level sets shrink as the real threshold increase, it is

assumed that the integer thresholds passed to Add Complex will be decreasing.

Export

● Output: Externally produces a text file.

● Description: Generates a file which lists all of the 0, 1 and 2-cells in the complex, along

with their birth times, and boundary information.

○ The output file lists each cell of the CW complex on its own line of the file. First
zero-dimensional cells are listed, then one-dimensional cells, and then finally
two-dimensional cells. Before listing cells of a new dimension, the number "-1" is
inserted on a new line. For each cell, we include integers which encode both
where the cell appears in the filtration and its boundary information.

○ The first number on each line corresponds to the birth time of the cell. This is a
positive integer valued number. Cells with a higher birth time are born later. The

condition that all cells are born by max_steps+1 is imposed.

■ For sub-level set filtration a cell with birth time “1” corresponds to a cell
born at the bottom threshold.

■ For a super-level set filtration a cell with birth time “1” corresponds to a
cell born at the top threshold.

○ The second number on each line corresponds to the total number of elements in
the boundary of the cell. After that, the elements in the boundary of the cell are
listed by their reference number. Each element in the boundary is preceded by a
coefficient (being either 1 or -1).

○ A cell's reference number is given by the order in which appeared after an
instance of "-1". For example, the reference number corresponding to the first 1-
cell appearing in the file is “0”.

Initialize

● Input: An integer

● Description: All cells in the Filtration must be born by a certain point. This function

specifies that point to be the input integer.

● Note: A Filtration has to perform the Initialize function before the Add Complex function

can be called.

GEOMETRIC CUBE

STORED DATA

Dimension

 Description: This integer defines the ambient dimension of the cube.

 Note: While in the current software release this variable is always set to 2, the hope is

that future versions will allow the user to study functions defined on cubes of higher

dimensions.

Coordinates

 Description: This is a vector of intervals corresponding to the coordinates of the cube.

PUBLIC FUNCTIONS

Subdivide

● Output: A vector of Geometric Cubes

● Description: Divides the original geometric cube in half in every dimension and returns

all of the constituent pieces. If the original geometric cube is a vertex then this function

returns a vector containing the original geometric cube.

Print

● Description: Uses std::cout to print the coordinates of the geometric cube.

NODE
STORED DATA

Parent

● Description: A pointer to the parent node.

Children

● Description: A vector of pointers to nodes (the children of the given node).

Faces

● Description: A vector of type Boolean, describing which of the faces in the corresponding

cube are included in the approximation. Indexing the faces is given thusly:

○ The first element is the single 2-cell

○ The next elements are the 1-cells, ordered counter clockwise, starting with the

bottom edge

○ The vertices are then listed and ordered as follows:: (0,0) ; (0,1) ; (1,0) ; (1,1)

FILTRATION DATA

Birth Time

● Description: A vector of integers corresponding to the faces, describing the cell’s birth

time.

Export Order

● Description: A vector of integers corresponding to the faces, describing the cell’s order in

which it is written to the output file.

PUBLIC FUNCTIONS

Filtered Subdivide

● Description: When a Complex is being added to a Filtration, certain cells need to be

refined into smaller cells. This function subdivides a Node (from a Filtration object) into

four new nodes and defines the birth time of each of the new cells (in the new nodes) to

be the birth time of the cell (from the original node) in which they are contained.

Leaf Check

● Output: Boolean

● Description: This function returns a Boolean value describing whether or not the given

node is a leaf, i.e. if the vector Children is empty.

● Note: For any node, either the Children or Faces vector should be empty.

Split

● Description: This function creates four new nodes and stores pointers to them.

Store Faces

● Inputs: A Boolean vector describing which faces the user wishes to store.

● Description: This function copies the input to the object’s face vector

POLYNOMIAL

STORED DATA

Interval Subdivisions

● Description: An unsigned integer which dictates how many times a Geometric Cube is

subdivided when performing interval arithmetic.

PRIVATE FUNCTIONS

Multiple Subdivisions

● Inputs: Geometric Cube

● Outputs: Vector of Geometric Cubes

● Description: Subdivides the input geometric cube “Interval Subdivisions” many times and

returns the constituent pieces.

Value Efficient

● Inputs: Geometric Cube.

● Outputs: Interval

● Description: Calculates the image of the polynomial on the geometric cube. Subdivides

the cube several times to obtain tighter Interval bounds.

Derivative Efficient

● Inputs: Geometric Cube.

● Outputs: Length-2 vector of Intervals

● Description: Calculates the image of the polynomial’s Jacobian on the geometric cube.

Subdivides the cube several times to obtain tighter Interval bounds.

PUBLIC FUNCTIONS

Define Interval Subdivision

● Inputs: Unsigned Integer

● Description: Redefines the object member “Interval Subdivisions” according to the user’s

input.

Value Test

● Inputs: Geometric Cube, Threshold (type double)

● Outputs: Boolean;

● Description: This function determines whether the image of the geometric cube has a

minimum which is greater than the threshold or has a maximum which is lower than the

threshold.

Derivative Test

● Inputs: Geometric Cube

● Outputs: Length-2 vector of Booleans;

● Description: The ith Boolean value refers to whether or the ith partial derivative of the

function is bounded away from zero on the geometric cube.

