U’ 0T ~ [F(0F = [2coshxT = [2 siah 1]
=4,

3. (E)

The numerator is defined for all real numbers since it contains a
cube root. The denominator is defined and nonzero except forx =6,
So, the domain is R\[6}.

4. (E)
The detemminant of M, denoted [ M1, is given by

P

For an n x n nonsingular matrix M, we have M~' =M1 adj (M) and
M 1={M 50 that

=3

IMt = [ 1M adj (M) |
IMEP = (1M | adj (M) |
tadi (M) | = 1471~

Since IM1 =3, ladj(M) | =IM|* = 3,

5. (B)

Let g be any generator of a cyclic group G of order 8. The
generators of G are of the form & where r isrelatively prime to 8 {that
is, the greatest common divisor of r and 8 is 1). The positive integers
less than 8 and relatively prime to § are 1,3,35,7. Therefore the four
generators of G are g', g°, g% and g

29

6. (&)

An integrating factor for an ordinary differentia} €quation of the
form Mdx + Ndy = 0 is a function of the form J(x, ¥} such that
JMdx + JNdy = 0 is exact, that is,

(M) _ O(JN)
dy =~ dx -

The given equation is not exact since

=0
but since r{x) = _!5’_ (%A;-— %%) = -";2- is a function of x, an
integrating factor is given by
| rix ax
J(x)=e
f e
=¢
= ~2nx
_ 1
= -x—z .

7. (D)
Wehave x=+/3 + x or x>= 3 + x 50 that x2=x-3=0.

Using the quadratic formula, we obtain x = l':-t-?—-— vV L3 .
I+ ‘\/E
2

We choose the positive square root, obtaining x =
smce x is positive.



5. (B)

In order for f(x) to be a vali¢ probabiliry densiry function

-+

J’ fx) dx=1.

10

1
Thus, 1=_J’ cx dx = 50¢ sotharc=5—0.
4]

The probability that x is in {1, 2], denoted P (1 <x < 2}, is given by

L2 i XE 2 2
<x<2y =] = =m[“] _ 3
PAlsxs2) =) 55 dr=55 %5, 100

The graph of the probability density function is shown below.

Jx)
i

{10,1/5}

¥
=

10

9. (E)
The expected value of a function g{x) of a random variable X,
denoted Efg(X)], is defined by

+

ElgC0 = _ g f(x) dx

where f(x) is the probability function for X. We have

E[X] = j_“_ X*f(x)dx = j: X2(1 - g-) dx

10. B)
An algebraic equation is of the form

' N -1 ¥ 4 -
ayx +a, X T+ 4axt+a,=0

where N isapositive integerand a,,, ... ¢, are integers. {a,#0). The
height k isdefinedby h = N +1g, )+ ... +la,i.For h=2, wehave
N = l,ig I=1,andia,|= 0. This implies that a =% 1 sothat x =
0. Note that there are no other possibilities except for N=1, We sce
that if N =0 then the equation is of degree 0 and is of the form a, =
0, which is unacceptable, as we require a, # 0. If N=2, on the other
hand, weobtain h=2=N+0+0+ ...+ 0, soa1=0=a1=a0whjch
is again unacceptable.

11. (D)
A point (x, y} is in the unit ball if and only if fx i+ 1y <1 The
boundary consists of the following lines:

a) x20;,y20: x+y=1

Il
[a—

b) x20;,y<0: x-y

n
[

) x<s0;y20: —x+y
d) xr£0;,v<£0: —x-y=1

These lines intersect at (-1, 0}, (0, 1), (1, 0), and (0, -1).

12 (D)
Trying the given solutions:
(L + 1
—f(x_i):-— x = x+ 1 =.f(X)
1 1 x-1
¥ -



, -1 x+l'f -x-1
me iy <[22 Jmamt wen
=] R —x+ 1 x-S
But if we solve y=f{x)=x+l1 for x

l_.

¥x— D=x+1
v-—x=y+1

y+1
y-1

X =

Thus £ 1 (x) = f(x). However,
=2 %1

xt -

_1
l—x

=-fix)

13, (E)
Let A, A,,... & bethecigenvalucsofannx nmatrix M. The

trace of M, denoted tr(M) equals Y 7*- - If pisapositive integer,

.E =]
then (M *) equals Z 7\- - The eigenvalues of M are given by
k=i
6~ A 10
- 2 - 3 - }u

which implies
—18 —6A+ 3%+ 2"+ 20 =0
(A-D(h~-2)=

A=1,2
Thus (M%) = 1 + 25 = 33,

14. (B

The Cavley-Hamilton theorem guarantzes that M will satisfy
poivnomial of degree §. However, since M is idempotent M? = M
M~ M = 0. Thus M sagsfiss p(x) = X’ ~x. Assurning that M satisgq
alinear poiynomual (degree ! ) equation ﬁ(’A} =ax+a, = 0 implj
that M Is a scalar matrx, i.e.,

aM+al =0
aU
M==—=g1x.

which contradicts the fact that M 1s nonscalar.

15. (C)

The incidence matrix for the graph G is a 5 X 5 marrix whos
{1,/ ) entry equals the number of edges connectng x, and X Thustl
matrix of & is given by

T0 20 0 1]
2 0310
03001
01001
1011 0]
16. (D)
A fixed point z must satisfy z = w(z) = f"?i_ which impli

?~z = 7~ 2, The solutions of 22 -2z +2 = { are given by

2% /4 -41)(2) _

= )




(A)

The n* roots of unity are solutions of the polynomial equation
-1 = 0. For > 1 and aleading coefficient of 1, the sum of the roots
‘a polynomial is equal to the negative of the coefficient of the x~!
m. Hence the sum of the n® roots of unity (n> 1) is zero. For another
monstration of this fact, let 1, &, ..., o*~! denote the n® roots of unity

> 1), Then

n
14 0 4.+ a"":l G
l-o

=0since ¢ =1.

3. (D)

A Boolean variable is a variable whose value can be either 0 or
A Boolean function is a function whose variables (both independent
1d dependent) are Boolean variables. The function f(x, y,z) = x +

+ z — xy — xz is not a Boolean function since f(1,0,1) = 2.

9. (A
The perimeter P(x, y) for the rectangle shown in the figure below
s P(x, y) = 4x + 4y. We want to maximize this quantity subject to the
onstraint
2 2
D(xy) =+ Lr-1=0.
a b

ntrgducing a Lagrange multiplier A, we must maximize L{x,y)
TP(_X, y)+ A @ (x,y). Taking the first order partial derivatives of
_(x, ¥) and setting r.hcmlcqual to zero yields

oL _ 2x
gx_-—v4+}.-a—2'=0

oL 2y
= =4+ A=
dy e
2x ¥ 2 2
Thus ‘?=—.Substitutingy=_b_%imo_i+lr=
b a a* ¢

ul I

. x° b x- a
vields = + _ =1, sothatxy = — === and
i a” a‘t’ ! 2 2
. va +b
y = -—'/-——'_,_.,_.-—-"'-—_———"_"__‘ N
~oa b

The maximum penmeter is 4+ @i+ b .

Vv

AN
NI

20. (D)

A one-to-one bicontinuous function b from a topological space
{X,7)ontoa topological space (X',17)1s calied a homeomorphism. A
property P of sets of a topological space (X,7)is calied topological if
it is invariant under homeomorphisms. To see that the property of
being an accumnulation point is topological, et X be an accumulation
point of aset S < ¥ and consider A{x}& r(S) &< X~. Let D, .be an
open set in X’ containing h(x). Then D, =k (D,.) is an open set if
X containing x . Since xis an accumulation of point of S, there exists
an e SN D, such that x # x . Thus A(¥) =h(S)n D, . dis-
dnct from A(x), which implies that k(x) is an accumulation point of
h(3).

21, {(©)
According to Cauchy’s mtcgra_l‘formula we have

. f(z)
flay=55 b T4 dz ,

36



where C 1s a closed contour which includes a,and f is analytic within
and on C. Now, if we let

o (cosz)
f(‘)"’ (Z_TE) ]
and ¢ = 0, we will have
= ()
fl@=r0) =56 A

Note that we can use the Cauchy integral formuia for the circle
C:iz-11 = 2 since it does not include the point z=m ,

yYi

_1\ 1 .3 B 4 i
22. (B)

Propositional algebra is similar to set algebra with union(1) re-
Placed with disjunction (v) , intersection () replaced with conjurnc-
tion (A) complementation () replaced with negation (~), the unj-

versal set ( 2 ) replaced with tautology (1), and the empty set ()
revlaced with aherrrelire 7% A Jon

~(VxeSiwx) @ (3xeS) [~w(x)] and
~{(3xeHwx) @ (Y xes) [~wx)]
for an open statement w(x) relative to 5. We have
~(3x e S [(plx)v gx) Ar(x)]
S (VxeS) (~[(px) vg)) arx)]}
= (VxeS) {[~p(x) va) v[~rix
= (VxeS) {{(~p(x)) Al=g(x)] v [~

23. (B)
We have o
. xn+l . (n -+ 1) n!
oo S P TR
(n+ 1) (n+ 1) n!
T e {nt D!
= tm (1+ )
o= e
24, (A)
By the chain rule, the derivative of a function defined E
b(x)
Oxa(x),b(x) =[ g0 de
aix)
1s given by
do{x, a(x),b(x)) _ ¢ + 9¢ da(x) 9¢ db(.
- =5y " S, t s




(=) dg(x,t db(x) daf
) —-._.&_x;_)..dt+g(x,b(x)) o~ &(xalx) dxx).

1at in evaluating g@ and g% » @ and b must be considered as
rdent variables. Therefore, before taking the derivative with
to either g or b, we must replace a(x) and b(x) by g and b in the
on of J(x, a(x}, b(x)). Thus

4 (°r—¢sinx cos x2
Zr-:-'x [——"—"—*z ]dt+0-——-——-x

_ 1 cosx?  cosx?

- x X T T x
1

=}—[1 2 cos x*}

_ cos 2x?

- X

B)

directional derivative of the function P(x,y) along the
nugh (x,) and parallel to the unit vector 7 is cqual to
>, - Therefore, since the values }VPf and Ju l=1
ant, the chrcctlonal derivative of 5 ismaximnized when the
'ween VP and ;} is zero. Therefore, the maximum valye

rectional derivative at P(x, y) equals the magnitude of the

Vi(xy) = gjxi i+ %j
. We have

F e m 3/ (0. 1)
5 =Xxve 4+ € —vysin : o =
of + coes 3 (0,1
g; =Xe€ CoOsS X ay =

= -
Thus V/(C,1) =i+ sothat [V£(0,1)]=+/2.

26. (O

Let n and k represent positive integers with £ satisfying
I $ksn. Anordered partition of n into k pans is a decomposition
of n into the sum of k positive integers:

h = I1+ x2+ I3+...+ X, .

Forafixed k, the number of ordered partitions of » into & parts is the
number of distinct ways of placing k = k — 1 identical markers in
the 77 = n— 1 spaces between a row of n ones. The first marker can
be placed in 'n ways, thesecondin 7 —~ 1 ways, ..., and the last
marker in 7 — {k— 1] ways. The number of ways is therefore
2(A-D ... F-k+1).

Since the markers are identical, in each way of placing them we can
switch the markers around without changing the chosen spaces and
still have the same way of placing. Therefore, each group of k! ways
of placing the k markers, as long as the spaces chosen are still the same,
are actually identical. Hence we must divide the above result by k! to
arrive at the correct answer. That is, the number of distinct ways is:

AR~ . @-k=-1) @
[3 k(m-m!

. (i )
k
which is the binomial coefficient. Since we can have ordered parti-
tionsof 5 into 1,2, 3, 4 or 5 parts (that is, we can decompose 5 as a sum
of 1,2, 3, 4 or 5 positive integers), the number of ordered partitions of
5is




7. D)
The Wronskian is given by

| £,(x) £,(0)
Wix) = , ,
F &) £
e a2
x*sinx X Cosx
2xsinx + x*cosx  2xcosx — ¥ sinx |
=25 g; 4 .2 3. 4 2
= LXTSIMXCOSY — X sinty - 2x SImxcosx — x"cos”x
=--x4
28. (A)

Assuming a solution of the form ¥, =r", we obtain
P rk-e-I Y - 0

*r=-2)(r+ 1) = 0

sothat r =— 1, 2. Hence

k k
Ye=c (-1} + c,2

and since y. = 9 and = — 12, we have
o Ny
c,+ ¢, =9
—b1+2c2=—12

This implies ¢, =10 and ¢, =1 which implies y, = 10(~1)* —2*,
For k=6, we obtain ¥Y,=-54. Note that in the general form of
a second order homogeneous recursion equationi, we have
Yz P AY,,, + By, =0. The general form of the solution of this equation
iscrre e, =y, . To evaulate 7 and r, , we can insert the special

seluton r* directly inw the €quaton and ge:
e At s B2
=P+ Ar+ B) =0
=r'+Ar+B=0,

We observe that if this quadratic cquation has 2 distinct roots, r.a
r, , then any expression of the form e+ ot will be a solution
the equation, where €, » €, are arbitrary constants, because of t
hinearity of the equarion.

2. (C)
Let N represent a positive integer and write N as

N=ug+ 104+ 10, + 100, + ... + 107w, |

Recalling thatg = » {mod ¢) means that @ — b is divisible by ¢, w
have that u, 10/= u (mod9) for0 < j < n. Thus N Su hu o+
+u_{mod 9) which implies N — (sum of digits of ¥) is divisible by 9
Therefore N i divisible by 9 if and only if the sum of its digits i
drvisible by 9. Since (3+2+2+4+4 + 6+ 6)/9 =3, 3224466 i
divisible by 9.

30. (O)
The possible inflection points of f occur where fxy=0 or
where /' (x) does not exist. We have

1
, xl=—})-Inx _
) = (x)z _ 1 gnx
x - x
Joxy = ~ = 3

X X



etting f”(r) =0 impliesthat x =¢>% There are no elements in
e domain of f(x) such that f”(x) does not exist. The funcdon f is

. - 3/2
oncave downward on (0, €] and concave upward on e’ “,+ = } |

Tus, there is an inflection point atx = ¥

B
- We (ﬁx)st reduce M to echelon form using elementary row opera-
OTLS:
1 2 -1 0
0 ~4 3 1
M7= 10 o0 1 2
kR, =R, 0 4 -1 3
2R +R R,
1 2 -1 07
0 -4 3 I
TEReE 0 4 - 3
0 0 1 2 |
r1 2 =1 0
0 -4 3 1
R, +R, oK, ? 0 0 4
L G 0 1 2
1 2 -1 0
|0 4 -3 -1
BB 0 00 2 4
"‘li'Ra"'RA"'Rat 0 t] 0 0
1 2 -1 0
0 4 -3 -1 M
E] R R ¢ ¢ 1 2| ¢

60 0 0 0

Since M_ has three lincarly independent row vectors, the rank of M
is three. This implies that the null space has dimension 4-3= L.

32. (<

Foraring R . the radical is the set of nilpotent ejements of R, that

is.theset {re RIr*=0forsomen e Z*} . The powers of the elements
ofZ,=10,1,2,3,4,5,6,7} are

b =

bk O
ot
pomt
—

AN A
LA
F
t
y—t

Thus the radical of Z L18{0,2,4,6}.

33. (D) . i o i
Using the identities sinx = i———;f—g* and cosx = -?—-';; .
we obtain
ix —ix P ~ix 72
.2 a1 et—e &+ e
smlcosxn[ ¥ }[ 5 ]
_ 1 2x 210 -x
. AT
_ ] axi _ —4x} [ 5 _ ,-x
Il T T I ey
= — ;21_ [e5% — 2% + ¢=3% = P54 2% _ ¢m54]
=11—6 2sinx + sin3x — sin 5x]
34. (<

Since f is continuous on {0, 2x], an absolute maximum exists. It
must occur at the endpoints {{0, — 1) ; (2, —1)] or at an interior point



where f ({_x) = (. Seuing f ’(x} = —2sin 2x + 2 sin ¥ equal to zero
implies sinx (1 -2 cos x} =0, so that x=n/3, &, 57/3. Since f(m/3)
==3/2,f(x) = 3, f(5773)=-3/2, f(0)=—1and f(2r)=—1,the absolute
maximum of f occurs at x =T

35. (o)
A number 4 is calied an eigenvatue for 2 mawix M if there exists
a nonzero vector X such that MX = AX. This implies that the
determinant | Al — M i =0. Thus
| A-1 3
| 2

A-2

-

W —3h—4=0; A=—14

For A= —1,[ Al — M} X =0 yields

—2.751 + ?:x2 0
2x, = 3x, - 0

3
so that 2x —3x, =0. Therefore;[- } is an eigenvector for A= —1.

3
2

- R

which implies A= — 1.

The solution also follows from the fact that ': } i$ an eigenvector:

36. D)
We can rearrange each term in the sum as follows:
1 (n+1)-n
T 1 1+ mn+ 1Y

Now if we define tan a_ = n, then we will have

r —r
.anahl tanag,

N = =wnia_ -~a,
ntt e+l 1l +wna,tana, R

7 1 \
o ;I_,_,:__.. | = — A —
So areian |~ arctan(tan(a, ;- &, =a__.-q,
m ”m
/ 1 3 )
Soz arcian =y (@ . —a,)
= Ty R
={_a2*a1)+(a3—az)+...+(_am+l—am)
=8, T4

= arctan{m + 1) — arctanl

= arctan(m + 1) — 1;-

37. (C)
The conjugaies of / ‘\/g + 1 consist of the set of all zeros «

the irreducible polynomial of v/ /3 + 1 over the rational number:
We first determine a polynomial over the rationals for which

~\/§+1 1s a zero:
x =/VEe1
x* =ﬁ+l
plxj=x* -2 -2

We now use the Eisenstein test 1o establish the irreducibility of p(x) -
x* + 2x* — 2 over the rational numbers. Firstly, p{x) 15 an element 0
the set of polynomials with integer coefficients. Secondly, a,=1=1
(mod 2), a,=-2=0 (mod 2), a,=-2=0 (mod 2?). Therefore p(x
1s irreducible over the rational numbers. The conjugates of

V3 + 1  are the zeros of p(x):



38. (B}
‘We have

2! > 1% istrue
22 > 27 is false
2 > 37 isfalse
2 > 4% isfalse
2% > 5% istrue

The inequality is true for 7= 5. Assume 2" > r* forn= k. We will will
show that 28+ > (k + 1)%. Consider f(x) = 2°—2x - 1 so that £
— 2 In2 —2. Wehave f(5) > Oand f (x) > Ofor xe [5,+c)
which implies 2* > 2k + 1 for k 2 5. Since 2F > K, we have

P AT L SO § S

2 sk + 1)

39. (A)
For a nonstrictly determined two player (7., P.) game G with
payoff matrix M

5
Thus YT T3y —(—1+2)

5
3 - This game favors player P

to the extent that it will, on the average, pay him 5/3 units/game.

40. (O
The first Newton approximation ¢an be obtained from the formuia
{
xl‘l+i =X&a = .f..’:x_")_
f (x0)

with = 0. Since f'(x) = 3x* -2, we have

= - f(xc) =2__‘3_=§

1 Q f'(xc) 10 5 ’

4i.
L ® (—(x-2) if x<2

Note that |x - 2{=
1 x=2) if x>2
Therefore

4

4 2
J. x-2daxr=-| G- @+ | (x-2) ax
1 2

2 4
_ 12 x*
‘_{2 -2x:|1 +[_2—_2x]2

=_[(2-4)-(%—2):|+ [(8 - 8)— (2 4)]

The graphof | x - 2 | on [}, 4] is shown following.
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42.  (B)

For a group of order n, a Sylow p-subgroup has order p* where £
is the largest positive integer such that P divides 7. Since 72 = 2° 32,
2 Sylow 3-subgroup has 9 elements.

43, (D)
A set G, together with a binary operation * is calied a group,
denoted (G, *), if

1) the binary operation * is associative; 7, g.heG
implies (f * g) * h=f*yg*p),

2) G contains an identity element; there exists e € G
suchthate* g=g*e=gforalige G.

3) Each eilement of G has an inverse: if g€ &, there
exists '€ G suchthatg* g"= g~ * g=e.

Theset G=R\[0) together with the binary operationa * b=|a | b does
not form a group. The number ] is a “right” identity element, but it is
not 2 “left” identity element:

1) 1*b=b foralbe G

2) a*l#aforace G when g <

44, (C)
We have

, T2 47 18 167
M = =[ = 4M
i 2 1 4 8

sothat M® = (4M) = 8 MM = & M M =4 M

45.  (B)

The total number of selections possible is the number of ways of

selecting 10 graduate students from 15 applicants which is 15 )
10
Since the selection process was random, the probability of any

selection is I'-"‘l-IS—: . We must determine the number of selections
o)

witich include 4 of the 5 “best students.” Firstly, 4 of the possibie 10

people selected must be selected from the § “best students.” This can
5 .

be accomplished in [ 4 :'ways. The other 10 — 4 = 6 people must

come from the other 15 -5 = 10 applicants. This can be accomplished
rs

4
the 5 “best students.” Hence, the probability of selecting 4 of the 5

. 10 .
in { . ways. Thus, there are j,[ t0 ] ways of selecting 4 of
6

“best students” is

5 [10
4 6 51 100 10!5! 0

- 20
[15] T 411l 614t 15t T a3
10




46.  (A)
Since 12 = x* + ¥%, sin 8 = y/r , and cos 8 = x/r , we have
r=2y/r-x/r
r=2y-x
Z+y +x-2y=0

47. (B)
Set x = 0.0259259 . Then 9990x = 10000x — 10x = 259.259
- (0.25G so that

259 7 —— 547
= G000 = 370 - Thus 2.0259259 = o<

X

48 (D) 5 -

The Maclaurin series fore*is 1 + x + %i-}- §T+'"+ T +....

Therefore

) 4 6 8 (_1)"x2"

- r T S SN —_—
Xxe —x[l—x +2! 3!-i-‘1¥1-{>-...+ o + .:|,
__1)”x2n+l

so that the general term is given by l
n!

49. (O
The solution set for the inequality is equivalent to finding where
the function

f(x)=x_%_2= (x 3)x(x+l)‘
ispositive. The figure below shows the x-axis subdivided into regions
where f is continuous and never zero; we always omit endpoints. Thus
f has the same sign throunghout each subinterval; the signs are shown

below. The solution of the mequality is ( — 1,0) (3,+ o0 ) .

b

56 (D)

The x-coordinates of the points of intersection of the curves are

solutions of x = 2~/x which implies x = 0,4. The region is shown
below. The volume generated is given by

Volume = :tf [(2'»/}-)2 -(x) 2] dx
1]

. 3"4
=7 [sz - %L

_ 32R

L
-
il
+J
i




51, (D) '
Using the associative law for intersection, we can WIlte:

c.C
[ANANBNB]

il

[ C
[An{ANB )] NB]

And)ynBnBHY

An@7

&

=U.

It

52 (D) —_ = )
The cross product of ¥ X v'is equal to the determinant

- = =

i J k -5 = = - o -
2 =1 3 |=(i+4k+3)-(-k+ 6i-2))

1 2 -1

- -
=—5i+ 5j+5k.

53. (B)
The group Z, X Z, contains eight elements

Z,XZy= {0, 0),(0,1),(0,2).(0,3),(1,0),(1,1) (1,2),(1,3))

The cyclic subgroup <(1,1)> is given by
< (L) >={(1,D,0,2),(13),(0,0)}

Since
O+ <(l1)>= [(1,2),(0.3),(1,0) .(G, 1)}

there are two left cosets.

54. (B)

Let G be an abelian group with order # . Then G is isomorphic to
the products of the form

X Z X ,..XZ
F,"0 tp,"1) (7 Me) '

Where the p, 's, not necessarily distinct, are the primes in the factori-
zation of n and (pl.‘} (pz,.:) ..-(pk.&) =n. Here Z_denotes the
cyelic group of {0, 1,2,3,4,5,6,7) under addition modulo n. For
n=36=2"3 we have G isomorphic to

Z,xZ,=2Z ,xZ

2 2
2 (3

szzzngzz T)(Z 1 X Z .

(2) (1) (3°)
Z XZ XZ =Z X Z X Z
o S R E
ZxXxZ xZ XZ.=Z xXZ XZ xZ .
2T gy TGy ey T eh

58. {8y
,oa{l=-r")
Thesumofa+ar+a+ ... +ar'+...1§ ———= |
1-r
We have

10

) .23 10
2 (=i =1 —i4i =i +..+1
=0

sothata=1, r=~{,andn=11. Thus
10

1

g 1=(=1) 14§ 1—i
s - = = i i
& (=9 1+ 1-71 1-—¢

=—1i.
j=0

56. (D).

The number 1 is the identity element R . Anelementu =a+ ibin
R is aunit if there exists v=c+ idin Rsuch that y v= 1, If u is a unit,



then @ = @ - ibis also a unit since W= 1. We have

l=w =77 = 1= uv(@¥) = (uT) (v¥)
= |uf|vf = (a® + b7 (c? + &°)

Since a.b,c,d are integers and ¢’ + & 2 0, we know that ¢? + b2 = 1.
The solutions are a =0, b= =1 and a = £1, b = 0 which implies that
the units are 1, &/ .

57. (C)
We have

3x+11 =20 (mod 12)
3x =9 (mod 12)
X =3 {mod 4)

The numbers in the set {...,-9,- 5,1, 3, 7,11, 15, ...} satisfy 3x
+11=20 (mod 12). Each of these numbers is in one of the following
equivalence classes:

B> =1{..,-93,1527,..)
<> ={..,-5,7,19,31,.. )
<> =1{...,—1,11,23, 35, ...}

58. (D)
The region R is shown below. Since R is convex and flx, y) is
linear, the maximum of f occurs at a comer point. We have

L0 =-2
fe = ~1
f(12)= 4.

Therefore the maximum is 4.

"4
.[
NSRS
i .a) X
59.  (B)
We have
P-x+1
ol —xt P4 0+ x
x° - x?
-+ X+ x*+x
- x* +x
2+ x4+ x
x? -1
x*+1
Sty Oy . 2
so that X —x +x -r-x___x_._x+l+x3-i_-1_
-1 x -1
©+ : ,
As x| >+ e, 3 1—:'0 sothat f(x)=x*—x+ 1.
x--—
60, (A

Let F represent the number of faces, E the nurnber of edges, and
V the number of vertices of an ordinary polyhedron. Euler's theorem
statesthat F — E + V =2 . Thus 12-17+V=2 sothat V=17,



then w =g — ;b is also a unit since Tv = 1, We have

l=uy =uv=l=uy@Ev)= {(uu)(vy)
=[]V = (a?+ b (2 + %

Since q, b, ¢, d are integers and @* + b* £ 0, we know that @ + b=},
The solutions area =0 , b = +] and a = =1, b = 0 which implies that
the units are 1 +; .

57. {C)
We have

3x+ 11 = 20 (mod 12)
3x =9 (mod 12)
x=3 (mod 4)

The numbers in the set {-=-9,-5-1,3, 7,11,15, ...} satisfy 3x
+11 =20 (mod 12). Each of these numbers is in one of the following
equivalence classes:

<3> ={...,-—9,3,15,27,...}

<I> ={...,—»5,7,I9,31,...}

<ll> = (., =~1,11,23,35,...)
S58. (D)

The region R is shown below. Since R is convex and Fx, ¥) 1is
linear, the maximum of f occurs at a comer point. We have

fam=-2
f2h)= -1
f(1.2y= 4,

Therefore the maximum s 4.

Py
Ly )

59. (B)
We have

X —x+1

f—l\/;‘s—x4+f+0x2+x

5 ~ 2

>
-x*+ X+ P x

—-x + x

x° ~ 1
x*+ 1
so that Rj—x4+lj+x=x2—x+l+x2+1.
X -1 x’ =1
2+

0 sothat f(x)= @ ~x + 1.

As |x|-—>+m,

60. (A)

Let F represent the number of faces, E the number of edges, and
V the number of vertices of an ordinary polyhedron. Euler’s theorem
Statesthat F — £ + V =2 . Thus 12-174+V =2 sothat V=7,



r2 1 0 -1 1 1
0 I O 4/3 —-5/3 -2/3 ~5/3R_ +R, =R,
0 0 -31 -2 1 1 -
2 0 0 -7/3 8/3 5/3
0 1 0 4/3 -5/3 -2/3 R -R,=R,
G, 27 e) (0 0 -3 | -2 1 1]
M1 0 0 ]-7/6 §/6 5/6
0 01 4/3 -5/3 ~-2/3 12R = R,
66. (A) 0 0 1 2/3 -1/3 ~-1/3] —1/3R, =R,
Using elementary row operations, we transform [M | 7] into
(I M7
2 1 3 1 0 07
0 -1 21 0 1 0
| 4 3 1 0 0 1]
2 1 3 1 0 07
4 3 1 0 0 i R, =R,
0 -1 2 0 1 0
M2 1 3 1 0 07
0 1 =5 1-2 0 1 ~ 2R+ R, =R,
| 0 -1 21 0 1 0
2 1 3 1 0 ¢
0 1 -5{-2 0 1 R,+ R, =R,
. 0 0 -3 1-2 1 1
2 1 0-1 1 1
0 1 =5 -2 0 1 R,+R =R
| 0 0 -3 1-2 1 1

S



61. (A)
We have (2,45 = a (1,1} + b (2,3) so that

a+2b
a+3b

2
4

Thus b = 2 and g = - 2 which implies

TCA=-2T1,D+2T 23)=-2(-11) + 2(1,2) = (4,2).

62. B
The function f(2) is analytic if and only if the Cauchy-Riemann
conditions are satisfied:

du _ oy
dx  dy
du __ v
dy  dx
Thus
g—‘i=g—;=cosxcoshy
and
gv—x=—%=—smxsinhy.
We have

0
vix,y) = -a-z— dy = j cos xcoshy dy =cosxsinh y + g(x) .

Also,

—sinxsinh y = %% =—sinxsinhy + g ’(x),

so that g(x) = constant. Hence v(x,y) = cos x sinh y + constant.

63. (E)

=T'T=1.1 being the identty wansformaton. The wansformadon
T is called the inverse of 7 and is denoted 7. Letx, y € E™and assume
Tr=Ty. Thenx=7"Tx=T" Ty =y so that T is one-to-one. If Tx =
0, then x = 0 since 76 =0 and 7 is one-to-one. Thus the null space of
7 = {0} and Dim N(T) = 0. The equation rn = Dim M(T) + Dim R(T)
shows that n = Dim R(T"). Reversing the roles of T and T+ above shows
that T-' is one-to-one; N(T7') = [0}, and Dim N{T') =0. Thus
Dim N{T1) = Dim R(T) .

64. ()
The given series is geometric, SO its SUIG 18 —=3.
] — =
3
65.  (A)

Two circles C, and C, are said 10 be orthogonal if they interesect
at ight angles. This means that at a point of intersection P(X,¥) of
C, and C,, the radius 7, of C, is tangent to C,at P and the radius of 7,
of C, istangentto C, at P. Note that the centers of C, and C, are
(—a,—bYand (- a’,—b7, respectively. The slope of the 1angent line
at the point of intersection P(X,¥) isequalto the negative recipro-
cal of the slope through (—a —b) and P(X,¥) . Itisalso equal
to the slope through the points P(x.¥} and (-a’,—b"). Thus

-1 y+b ’
Y+b x+a’
x+a

~F+(@+a)T+aa’l=7+ b+ b )T+ b .

Multiplying by 2 and rearranging terms,
= — [+ 20T+ 3+ 2b5)+ 2+ 2a’%+ ¥+ 26 3]

=2aa’ + 2bbc




