GRE MATHEMATICS TEST I

TIME: 2 hours and 50 minutes

66 Questions

DIRECTIONS: Choose the best answer for each question and mark the letter of your selection on the corresponding answer sheet.

- 1. The graph of the arccosine function is the graph of the arcsine function
 - (A) translated horizontally $\pi/2$ units to the right
 - (B) first reflected in the horizontal axis and then translated vertically $\pi/2$ units upward
 - (C) first translated horizontally $\pi/2$ units to the left and then reflected in the horizontal axis
 - (D) first translated vertically $\pi/2$ units downward and then reflected in the vertical axis
 - (E) translated horizontally $\pi/2$ units to the left

2. If $f(x) = e^x - e^{-x}$, then $[f'(x)]^2 - [f(x)]^2$ equals

(C) $2e^{-x}$

(E) $2e^x$

- (D) 2
- The domain of $f(x) = \frac{\sqrt[3]{x+2}}{x-6}$ is given by
- (A) $(6, +\infty)$ (D) $[-2, +\infty) \setminus \{6\}$
- (B) $[-2, +\infty)$
- (E) $R \setminus \{6\}$

- (C) $R \setminus \{-2, 6\}$
- Let $M = \begin{bmatrix} 1 & 2 \\ 3 & 9 \end{bmatrix}$. The determinant of the adjoint of M is
- (A) 9

(D) 18

(B) 6

(E) 3

- (C) 27
- The number of generators of a cyclic group of order 8 is
- (A) 6

(D) 2

(B) 4

(E) 1

- An integrating factor for the ordinary differential equation $\frac{-2y}{y} dx + (x^2y\cos y + 1) dy = 0 \text{ is}$
 - (A) I

(D) -2x

(B) $\frac{-2}{r}$

(E) x^2

- (C) $\frac{1}{r^2}$
- Assuming convergence, find $x = \sqrt{3 + \sqrt{3 + \sqrt{3 + \dots}}}$
 - (A) $\frac{1}{2}(\sqrt{5}+1)$
 - (B) $\frac{1}{2}(\sqrt{13}-1)$
 - (C) $\frac{1}{2}(\sqrt{5}-1)$
 - (D) $\frac{1}{2}(\sqrt{13}+1)$
 - (E) $\frac{1}{2}(\sqrt{13}-\sqrt{5})$
- 8. Let x be a random variable possessing the probability density function

$$f(x) = \begin{cases} cx & x \in [0, 10] \\ 0 & \text{otherwise} \end{cases}$$

where $c \in R$. The probability that x is an element of $\{1, 2\}$ is

(C)
$$\frac{5}{100}$$

(E)
$$\frac{9}{100}$$

(D)
$$\frac{7}{100}$$

9. Let the random variable X have the probability density function

$$f(x) = \begin{cases} 1 - \frac{x}{2} & x \in (0, 2) \\ 0 & \text{otherwise} \end{cases}$$

The expected value of the random variable X^2 is

 $(A) \quad \frac{1}{3}$

(D) $\frac{1}{6}$

(B) $\frac{5}{6}$

(E) $\frac{2}{3}$

- (C) $\frac{1}{2}$
- 10. Find the number of solutions of the set of all algebraic equations of height two.
 - (A) 0

(D) 3

(B) 1

(E) 4

(C) 2

- 11. Define a metric on $R^2 = R \times R$ by $d[(x_1, y_1); (x_2, y_2)]$ = $|x_2 - x_1| + |y_2 - y_1|$. The unit ball d[(0, 0); (x, y)] < 1 is
 - (A) the interior of a circle with center (0, 0) and radius 1
 - (B) (0,0)
 - (C) the interior of a square with vertices (-1, 1), (1, 1), (1, -1) and (-1, -1)
 - (D) the interior of a square with vertices (-1, 0), (0, 1), (1, 0) and (0, -1)
 - (E) the interior of a triangle with vertices (-1, -1), $(0, \sqrt{3})$, and (1, -1)
- 12. Which of the following is not equal to $f(x) = \frac{x+1}{x-1}$ when both are defined?
 - (A) $-f(x^{-1})$

(D) $f^{-1}(x^{-1})$

(B) $[f(-x)]^{-1}$

(E) $\frac{1}{2} [f^{-1}(x) - f(x^{-1})]$

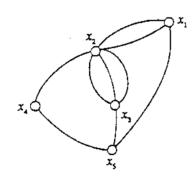
- (C) $f^{-1}(x)$
- 13. Let $M = \begin{bmatrix} 6 & 10 \\ -2 & -3 \end{bmatrix}$. The trace of M^5 equals

(C)
$$5^3$$

(D)
$$6^5 + (-3)^5$$

The degree of the minimum polynomial satisfied by a nonsca-14. lar, 8 by 8, idempotent matrix M is

- (C) 8
- Find the incidence matrix for the graph: 15.



(A)
$$\begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 2 & 0 & 0 & 1 \\
2 & 0 & 3 & 1 & 0 \\
0 & 3 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 & 0 & 0 & 1 \\ 2 & 0 & 3 & 1 & 0 \\ 0 & 3 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix} \qquad (D) \begin{bmatrix} 1 & 2 & 0 & 0 & 1 \\ 2 & 1 & 3 & 1 & 0 \\ 0 & 3 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$

The fixed point(s) of the Mobius transformation 16. $w(z) = \frac{z-2}{z-1}$ is (are)

(A)
$$1 \pm \sqrt{3}$$
 (D) $1 \pm i$

(D)
$$1 \pm i$$

(B)
$$1 \pm 2i$$

(E)
$$-1 \pm \sqrt{2}i$$

- (C) 2i
- 17. The sum of the 9th roots of unity is

(E)
$$1 + i$$

- Let x, y, z represent Boolean variables. Which of the 18. following is not a Boolean function?
 - (A) $f(x, y) = x\sqrt{y}$
 - (B) $f(x, y, z) = \max\{x, y, z\}$
 - (C) $f(x, y) = x^2 + y xy$
 - (D) f(x, y, z) = x + y + z xy yz
 - (E) f(x, y, z) = xyz
- What is the maximum perimeter of all rectangles that can be 19. inscribed in $\frac{x^2}{a^2} + \frac{y^2}{k^2} = 1$?
- (A) $4\sqrt{a^2 + b^2}$ (D) $a^2 + b^2$ (B) $\frac{8}{\sqrt{-2 + b^2}}$ (E) $2(a^2 + b^2)$
- (C) $2\sqrt{a^2+b^2}$
- Which of the following is a topological property? 20.
 - (A) boundedness
 - (B) being a Cauchy sequence

- (C) completeness
- (D) being an accumulation (limit) point
- (E) length
- The value of $I = \oint \frac{\cos z}{z(z-\pi)} dz$ where C is the circle |z-1| = 2 is
 - (A) 0

(D) -4i

(B) 2i

(E) 4i

- (C) -2i
- 22. Let p(x), q(x), and r(x) be open statements relative to the set S. Then $\sim (\exists x \in S) [(p(x) \lor q(x)) \land r(x)]$ is equivalent to
 - (A) $(\forall x \in S) \{ [(\neg p(x)) \lor (\neg q(x))] \lor [\neg r(x)] \}$
 - (B) $(\forall x \in S) \{ [(\sim p(x)) \land (\sim q(x))] \lor [\sim r(x)] \}$
 - (C) $(\forall x \in S) \{ [(\neg p(x)) \land (\neg q(x))] \lor [r(x)] \}$
 - (D) $(\forall x \in S) \{ [(\neg p(x)) \ \lor \ (\neg q(x))] \ \land \ [\neg r(x)] \}$
 - (E) $(\forall x \in S) \{ [(\neg p(x)) \ \lor \ (\neg q(x))] \land [r(x)] \}$

- Let $X_n = \frac{1}{n!}$ for $n = 1, 2, 5, \dots$ Then $\lim_{X_n} \frac{1}{X_n}$ equals
 - (A) √€

(B) e

(E) e^{1} (D) e^{2} (D)

- (C) $\sqrt{e^3}$
- The derivative of $f(x) = \int_{-t}^{0} \frac{\cos xt}{t} dt$ is 24.

 - $(A) \quad -\frac{\cos 2x^2}{x} \qquad \qquad (D) \quad -\frac{\sin 2x^2}{x}$
 - (B) $\frac{1}{x} [1 + 2 \cos x^2]$ (E) $\frac{\cos x^2}{x}$
 - (C) $\frac{1}{r} [1 + 2 \sin x^2]$

- 25. The maximum value of the directional derivative on the surface $z = f(x, y) = xe^{xy} + y \cos x$ at P(0, 1) is
 - (A) 1

(D) $\sqrt{4}$

(B) $\sqrt{2}$

(E) $\sqrt{5}$

(C) $\sqrt{3}$

- The number of ordered partitions of the positive integer 5 is
 - (A) 20

(D) 14

(B) 18

(E) 12

- (C) 16
- 27. The Wronskian of $f_1(x) = x^2 \sin x$ and $f_2(x) = x^2 \cos x$ is
 - (A) x^2

(D) $-x^4$

(B) $-x^2$

(E) $2x^4$

- (C) x^4
- 28. Given the linear second-order difference equation

$$y_{k+2} - y_{k+1} - 2y_k = 0$$
; $k = 0, 1, 2, ...$
 $y_0 = 9$; $y_1 = -12$

find y_6 .

(A) - 54

(D) 27

(B) 64

(E) 54

(C) -32

- 29. Which of the following numbers is divisible by 9?
 - (A) 7224466

(D) 5224466

(B) 9224466

(E) 1224466

- (C) 3224466
- 30. The inflection point for $f(x) = \frac{\ln x}{x}$ occurs at $x = \frac{\ln x}{x}$
 - (A) \sqrt{e}

(D) e⁻¹

(B) e

(E) $\sqrt{e^{-1}}$

- (C) $\sqrt{e^3}$
- 31. The dimension of the null space of

$$M = \begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & 2 & 0 & 1 \\ 1 & 2 & 0 & 2 \\ -1 & 0 & 1 & 3 \end{bmatrix}$$

is:

(A) 2

(D) 3

(B) 1

(E) 0

- 32. Find the radical of the commutative ring Z_a .
 - (A) $Z_{\mathbf{z}}$

(D) {0, 2, 4}

(B) $\{0\}$

(E) $\{0, 2\}$

- (C) {0, 2, 4, 6}
- 33. Which of the following is equivalent to $\sin^3 x \cos^2 x$?
 - (A) $\frac{1}{16} \left[2 \sin x \sin 3x 2 \sin 5x \right]$
 - (B) $\frac{1}{16} [\sin x 2\sin 3x \sin 5x]$
 - (C) $\frac{1}{16} [2 \sin x \sin 3x \sin 5x]$
 - (D) $\frac{1}{16} [2 \sin x + \sin 3x \sin 5x]$
 - (E) $\frac{1}{16} [\sin x + \sin 3x \sin 5x]$
- 34. The absolute maximum of $f(x) = \cos 2x 2 \cos x$ on $[0, 2\pi]$ occurs at x =
 - (A) $\frac{\pi}{3}$

(D) $\frac{5\pi}{3}$

(B) $\frac{\pi}{2}$

(E) $\frac{3\pi}{4}$

(C) π

The eigenvalue which corresponds to the eigenvector

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix} \text{ for } M = \begin{bmatrix} 1 & -3 \\ -2 & 2 \end{bmatrix} \text{ is }$$

(A) 1

(D) -4

(B) 4

(E) 2

- (C) -1
- Evaluate the sum $\sum_{n=1}^{m} \arctan\left(\frac{1}{n^2 + n + 1}\right)$
- (A) $m^2 + 1$
- $(B) \quad \frac{1}{m^2 + m}$
- (C) $\cot(m+1) \frac{1}{m^2+1}$
- (D) $\arctan(m+1) \frac{\pi}{4}$
- (E) $(-1)^m \sin(m+1) + \tan m$
- The conjugates of an element are the other roots of the irreducible polynomial of which the given element is a root. The conjugates of $\sqrt{3} + 1$ over the field of rational numbers are

(B)
$$\sqrt{\sqrt{3}+1}$$
, $-\sqrt{\sqrt{3}+1}$

(C)
$$\pm \sqrt{1 + \sqrt{3}}$$
, $\pm \sqrt{1 - \sqrt{3}}$

(D)
$$\pm \sqrt{\sqrt{3}+1}$$
, $\pm \sqrt{\sqrt{3}-1}$

(E)
$$\sqrt{\sqrt{3}+1}$$
, $-\sqrt{\sqrt{3}-1}$

- 38. The smallest positive integer n for which the inequality $2^n > n^2$ is true for $\{n, n+1, ...\}$ is
 - (A) 1

(D) 4

(B) 2

(E) 5

- (C) 3
- 39. Consider the two player (P_1, P_2) game G with payoff matrix P_2

$$P_{1}\left[\begin{array}{c}1-1\\2&3\end{array}\right]$$

The minimax value of G is

(A) $\frac{5}{3}$

(D) 5

(B) 1

(E) 0

- 40. The first Newton approximation x_i for a zero of $f(x) = x^3 2x$ with initial approximation $x_0 = 2$ is
 - (A) $\frac{12}{5}$

(D) $\frac{6}{5}$

(B) 2

(E) $\frac{7}{5}$

- (C) $\frac{8}{5}$
- 41. The value of $\int_{1}^{4} |x-2| dx$ is
 - (A) 3

(D) $\frac{3}{2}$

 (\mathring{B}) $\frac{5}{2}$

 $(\mathbf{E}) \quad \frac{7}{2}$

(C) 2

- 42. A Sylow 3-subgroup of a group of order 72 has order
 - (A) 3

(D) 27

(B) 9

(E) 36

(C) 18

43. Which of the following sets, together with the given binary operation *, does not form a group?

Note: Z = integers Q = rationalsR = reals

C = complex numbers

- (A) $G = \{a + b \sqrt{2} \in R \setminus \{0\} \mid a, b \in Q\}$ *: usual multiplication of real numbers
- (B) $G = \{a + bi \ \sqrt{2} \in \mathbb{C} \setminus \{0\} \ | \ a, b \in Q \}$ *: usual multiplication of complex numbers
- (C) $G = {\sqrt[3]{a} \in R \mid a \in Z}$ *: for $a, b \in G$, $\sqrt[3]{a} * \sqrt[3]{b} = \sqrt[3]{a+b}$
- (D) $G = R \setminus \{0\}$ *: for $a, b \in G$, a * b = |a| b
- (E) $G = \{z \in C | |z| = 1\}$ *: usual multiplication of complex numbers
- 44. Let $M = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$. Then $M^6 = kM$ for k = 1
 - (A) 2^6

(D) 2^{12}

(B) 2^8

(E) 2^{14}

(C) 2^{10}

- 45. From a group of 15 mathematics graduate school applicants, 10 are selected at random. Let P be the probability that 4 of the 5 applicants who would make the best graduate students are included in the 10 selected. Which of the following statements is true?

 - (A) $0 \le P \le \frac{1}{5}$ (D) $\frac{3}{5} < P \le \frac{4}{5}$
 - (B) $\frac{1}{5} < P \le \frac{2}{5}$ (E) $\frac{4}{5} < P \le 1$
 - (C) $\frac{2}{5} < P \le \frac{3}{5}$
- 46. The equation $r = 2 \sin \theta - \cos \theta$ in rectangular coordinates is given by
 - (A) $x^2 + y^2 + x 2y = 0$
 - (B) $x^2 x + 2y = 0$
 - (C) $x^2 + y^2 + 2x y = 0$
 - (D) $x^2 y^2 x + 2y = 0$
 - (E) $v^2 x^2 x + 2v = 0$
- 47. The decimal 2.0259 259 is equivalent to which of the following?

(D) $\frac{747}{370}$

(E)
$$\frac{737}{380}$$

The general term of the Maclaurin series for xe^{-x^2} is 48.

(A)
$$\frac{(-1)^n x^{2n}}{(n+1)!}$$
 (D) $\frac{(-1)^n x^{2n+1}}{n!}$

(D)
$$\frac{(-1)^n x^{2n+1}}{n!}$$

(B)
$$\frac{(-1)^{n+1} x^{2n+1}}{n!}$$
 (E) $\frac{(-1)^{n+1} x^{2n}}{n!}$

(E)
$$\frac{(-1)^{n+1} x^{2n}}{n!}$$

(C)
$$\frac{(-1)^n x^{2n+1}}{(n+1)!}$$

The solution set for the inequality $x - \frac{3}{x} > 2$ is given by 49.

$$(A) \quad (0,+\infty)$$

(D)
$$(-\infty,0) \cup (3,+\infty)$$

(B)
$$(3, +\infty)$$

(E)
$$(-\infty, 3)$$

(C)
$$(-1.0)$$
 U $(3.+\infty)$

50. The volume (in cubic units) generated by rotating the region defined by the curves

$$y = x$$
$$y = 2\sqrt{x}$$

around the
$$x$$
 -axis is

(A)
$$\frac{16\pi}{5}$$

(B)
$$\frac{32\pi}{15}$$

(C)	<u>16π</u>		
	3		

(D)
$$\frac{32\pi}{3}$$

- (E) π
- Let A and B be subsets of U and denote the complement of 51. subset X of U by X^c . Find $[[A \cap (A \cap B^c)] \cap B]^c$.
 - (A) B .

(D) U

(B) A^c

(E) Ø

- (C) A U B e
- 52. The cross product $\vec{u} \times \vec{v}$ of the vectors

$$\overrightarrow{u} = 2\overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k}$$

$$\overrightarrow{v} = \overrightarrow{i} + 2\overrightarrow{j} - \overrightarrow{k}$$

is given by

(A)
$$7\overrightarrow{i} + \overrightarrow{j} + 3\overrightarrow{k}$$

(A)
$$\overrightarrow{7i} + \overrightarrow{j} + 3\overrightarrow{k}$$
 (D) $-5\overrightarrow{i} + 5\overrightarrow{j} + 5\overrightarrow{k}$

(B)
$$\overrightarrow{5i} + \overrightarrow{5j} + 3\overrightarrow{k}$$
 (E) $\overrightarrow{7i} - \overrightarrow{j}$

(E)
$$7\vec{i} - \vec{j}$$

(C)
$$-3$$

Find the number of left cosets of the cyclic subgroup generated 53. by (1, 1) of $Z_2 \times Z_4$ where Z_4 denotes the cyclic group of $\{0, 1, 1\}$ 2, ..., n-1} under addition modulo n.

(D) 6

$$(B)$$
 2

(E) 8

$$(C)$$
 4

54. Up to isomorphism, how many abelian groups are there of order 36?

(D) 12

(E) 18

55. If
$$i = \sqrt{-1}$$
, then $\sum_{j=0}^{10} (-i)^j$ is

$$(A)$$
 i

(D)
$$1 + i$$

(B)
$$-1$$

(E)
$$1 - i$$

(C)
$$-i$$

The set of gaussian integers, $R = \{a+ib \mid a,b \in Z \text{ (integers)}\}\$, is a commutative subring of the complex numbers. An element u = e+id in R is a unit of R if there exists $V \in R$ such that uv = 1. The unit(s) of R is (are)

 $(A) \pm 1$

(D) ± 1 , $\pm i$

(B) ± i

(E) 1

(C) 1, i

The number of solutions (equivalence classes) of the congruence $3x + 11 \equiv 20 \pmod{12}$ is:

- (A) no solutions
- (D) 4

(B) 1

(E) 6

(C) 3

Let R be the region defined by

$$y = x - 1$$
; $x = 1$; $y = -x + 3$

Find the maximum value of f(x, y) = -2x + 3y on R.

(A) -2

(D) 4

(B) 1

(E) -1

(C) 2

59. If | x | is large, then $f(x) = \frac{x^5 - x^4 + x^3 + x}{x^3 - 1}$ is approximately

(A) $x^2 + x$

- (D) $x^2 + 1$
- (B) $x^2 x + 1$

 $(E) \quad x^2 - x$

(C) x²

60. The number of vertices of an ordinary polyhedron with 12 faces and 17 edges is

(A) 7

(D) 9

(B) 5

(E) 13

(C) 11

61. Let T be a linear transformation of the plane such that T(1, 1) = (-1, 1) and T(2, 3) = (1, 2). Then T(2, 4) equals

(A) (4, 2)

(D) (2,4)

(B) (2,-4)

(E) (-3, 2)

(C) (3, -2)

- The function $f(z) = \sin x \cosh y + v(x, y)i$ is analytic for v(x, y)62. equal to
 - (A) $\cos x \cosh y$
- (D) $\sin x \sinh y$
- (B) $\cos x \sinh y$
- (E) $\sin y \cosh x$
- (C) $-\sin y \cosh x$
- Let T represent a nonsingular linear transformation from E^{π} 63. into E^n . Which of the following is not true?
 - (A) Null space of $T = \{0\}$
 - (B) T is one-to-one
 - (C) Dimension of null space is zero: Dim N(T) = 0
 - (D) Dimension of range space is n: Dim R(T) = n
 - (E) $\operatorname{Dim} N(T^{-1}) = \operatorname{Dim} R(T)$
- Find the value of the sum: $1 + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \dots$ 64.
 - (A) $\frac{11}{3}$

(D) 3

(E) ∞

(C) 2

65. The circles

$$c_1$$
: $x^2 + y^2 + 2ax + 2by + c = 0$
 c_2 : $x^2 + y^2 + 2a'x + 2b'y + c' = 0$

are orthogonal if

(A)
$$2aa' + 2bb' = c + c'$$

(B)
$$a + a' + b + b' = cc'$$

(C)
$$aa' - bb' = c - c'$$

(D)
$$2aa' - 2bb' = c - c'$$

(E)
$$a+b+c=a'+b'+c'$$

The inverse of the matrix $M = \begin{bmatrix} 2 & 1 & 3 \\ 0 & -1 & 2 \\ 4 & 3 & 1 \end{bmatrix}$ is the matrix $M^{-1} = \frac{1}{6} \begin{bmatrix} -7 & 8 & a \\ 8 & -10 & -4 \\ 4 & b & -2 \end{bmatrix}$ where 66.

$$M^{-1} = \frac{1}{6} \begin{bmatrix} -7 & 8 & a \\ 8 & -10 & -4 \\ 4 & b & -2 \end{bmatrix}$$
 where

- (A) a = 5; b = -2 (D) a = 2; b = -3
- (B) a = 3; b = 2 (E) a = 2; b = 3
- (C) a = 1; b = -3

GRE MATHEMATICS TEST I

ANSWER KEY

-	-		_		
1.	В	23.	В	45.	В
2.	A	24.	Α	46.	Α
3.	E	25.	В	47.	В
4.	E	26.	С	48.	D
5.	В	27.	D	49.	С
6.	С	28.	Α	50.	D
7.	D	29.	С	51.	D
8.	В	30.	С	52.	D
9	E	31.	В	53.	В
10.	• B	32.	C	54.	В
11.	D	33.	D	55.	С
12.	D	34.	С	56.	D
13.	E	35.	C	57.	С
14.	В	36.	D	58.	D
15.	С	37.	С	59.	В
16.	D	38.	E	60.	Α
17.	Α	39.	Α	61.	À
18.	D	40.	С	62.	В
19.	Α	41.	В	63.	E
20.	D	42.	В	64.	D
21.	С	43.	D	65.	Α
22.	В	44.	С	66.	A

GRE MATHEMATICS TEST I

DETAILED EXPLANATIONS OF ANSWERS

1. **(B)**

Whereas the fundamental identity for the trigonometric functions is $\sin^2 x + \cos^2 x = 1$, the fundamental identity for the inverse trigonometric functions is $\arcsin x + \arccos x = \pi/2$. Thus $\arccos x = \pi/2 - \arcsin x$. The curve of $\arcsin x$ reflected in the horizontal axis will represent the curve of $-\arcsin x$. Adding $\pi/2$ is geometrically equivalent to translating the curve vertically $\pi/2$ units upward.

2. (A)
Since
$$f'(x) = e^x + e^{-x}$$
, we have

$$[f'(x)]^2 - [f(x)]^2 = [e^x + e^{-x}]^2 - [e^x - e^{-x}]^2$$

$$= e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x}$$

Using the identities

$$f(x) = 2\sinh x$$
, $f'(x) = 2\cosh x$, and $\cosh^2 x - \sinh^2 x = 1$.