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Abstract

We discuss the recent progress on two problems in Several Complex Variables. The
first one is on the gap phenomenon for proper holomorphic maps between balls.
The second one is on the precise holomorphic structure of Bishop surfaces near a
vanishing Bishop invariant.
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1 Introduction

In this article, we give a survey on the recent studies of two classical problems in
several complex variables. The first problem concerns the geometric structure for
proper holomorphic mappings between balls in complex spaces of different dimen-
sions. We will be mainly focusing on our investigation on the gap phenomenon
carried out in [HJX2] [HJY]. We will also formulate a general conjecture to guide
the further study along these lines of research. The second topic to be touched
here is on the normal form theory for a Bishop surface with a vanishing Bishop
invariant. We will discuss a recent joint work of the first and the third authors
[HY]. We will also pose two open problems motivated from the papers of [MW]
[HY].

2 Gap phenomenon for proper holomorphic map-
pings between balls

Write Bn for the unit ball in the complex space Cn. Write Prop(Bn,BN ) for the set
of proper holomorphic maps from Bn into BN . Namely, F ∈ Prop(Bn,BN ) if F is
a holomorphic map from Bn into BN such that for any compact subset K ⊂⊂ BN ,
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F−1(K) is also a compact subset of Bn. Roughly speaking, the properness of the
map F says that F maps the boundary of Bn into the boundary of BN .

Write Propk(Bn,BN ) for the set of proper holomorphic maps from Bn into
BN , which are Ck-smooth up to the boundary for a non-negative integer k. We
say that F and G ∈ Prop(Bn,BN ) are equivalent if there are automorphisms
σ ∈ Aut(Bn) and τ ∈ Aut(BN ) such that F = τ ◦G ◦σ. A research field in several
complex variables, that has attracted much attention in the past two decades, is
to classifiy proper holomorphic mappings between balls under such an equivalence
relation. The interested reader may consult the articles of [Fr1] [Hu2] and [HJ] for
surveys from various aspects of studies in this direction. In this article, we only
address recent studies on the gap property for mappings bewteen balls.

For a proper holomorphic map F ∈ Prop(Bn,BN ), one can always add zero
components to F and then compose it with automorphisms from Aut(BN ) to
produce other proper holomorphic maps from Bn into BN ′

with N ′ > N . However,
maps obtained in this manner have the same geometric character as that of the
original F and should not be regarded as ‘different maps’. Motivated by this
construction, one gives the following definition (see also [DL] [DLP] for related
definitions):

Definition 2.1. A map F ∈ Prop(Bn,BN ) is said to be minimum if F is not
equivalent to a map of the form (G, 0), where G is a proper holomorphic map from
Bn into BN ′

with N ′ < N .

Since a linear fractional transformation in Aut(Bm) maps an affine complex
hyperplane in Cm to an affine complex hyperplane in Cm, it is not hard for us
to see that a map F ∈ Prop(Bn,BN ) is minimum if and only if the image of Bn

under F is not contained in an affine complex hyperplane of CN . This simple fact
will be very useful for us to test whether a map is minimum or not.

A minimum proper holomorphic map can not be constructed with the above
mentioned simple method. It is easy to verify that there is no proper holomorphic
map from Bn to BN when N < n. By definition, Prop(Bn,Bn) includes Aut(Bn)
which is isomorphic to SU(n, 1) modifying {diag{±1, · · · ,±1}} and thus is a non-
compact Lie group. At this point, we should mention a result of Alexander [Alx]
stating that Prop(Bn,Bn) = Aut(Bn) for n > 1. In what follows, we will always
make the assumption that N ≥ n > 2. In 1979, S. Webster proved that any proper
holomorphic map in Prop3(Bn,BN ) with N = n + 1 > 4 is equivalent to the map
(Id, 0) and thus is not minimum. After the work of many people (see [Fa] [Fr2],
etc), the following was proved by the first author in [Hu4]:

Theorem 2.2. (Huang [Hu4]) Let F ∈ Prop2(Bn,BN ) with n < N ≤ 2n − 2.
Then f is equivalent to the ‘big circle embedding’ (Id, 0).

In particular, Theorem 2.2 says that there are no minimum proper holo-
morphic maps which are C2-smooth up to the boundary from Bn into BN when
n < N ≤ 2n− 2.

Recall that the Whitney map Wn,1 := (z′, znz) for z = (z′, zn) ∈ Cn is a
proper quadratic polynomial map from Bn into B2n−1. Wn,1 is minimum, for,
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otherwise, by Theorem 2.2, Wn,1 would have degree one. For λ ∈ [0, 1] and a holo-
morphic map h from Bn

into CN ′
, define Wn,1(z;h, λ) := (z′, λzn,

√
1− λ2znh(z)).

When h = z and λ ∈ [0, 1), Wn,1(z; z, λ) is a proper quadratic polynomial map
from Bn into B2n. When λ ∈ (0, 1), Wn,1(z; z, λ) is minimum; for, otherwise, there
would be complex numbers {µj}2n

j=0, not all zero, such that

n−1∑

j=1

µjzj + µnλzn +
√

1− λ2

n∑

j=1

znµj+nzj = µ0.

Letting z = 0, we get µ0 = 0. Comparing the coefficients of znzj and zj for
j = 1, · · · , n, we get µj = 0 for j = 1, · · · , 2n. This is a contradiction.

Wn,1(z; z, λ) was first constructed by D’Angelo and is also called the D’Angelo
family [DA] as λ varies from 0 to 1.

We say that proper holomorphic maps between balls possess the first gap
phenomenon when the target dimension N satisfies the property that n < N <
2n − 1. In a recent joint paper of the first two authors with Xu, we proved the
following:

Theorem 2.3. (Huang-Ji-Xu [HJX2]) Let F ∈ Prop3(Bn,BN ) with 2n < N <
3n−3. Then F is equivalent to a quadratic polynomial map of the form (Wn,1(z; z, λ), 0)
for a certain λ ∈ [0, 1].

Define the generalized Whitney map Wn,k for 1 ≤ k ≤ n as follows:

Example 2.4. ([Hu5]) Let

ψ1 = (z1,
√

2z2, · · · ,
√

2zk, zk+1, · · · , zn),
ψ2 = (z2,

√
2z3, · · · ,

√
2zk, zk+1, · · · , zn),

· · ·
ψk−1 = (zk−1,

√
2zk, zk+1, · · · , zn)

ψk = (zk, zk+1, · · · , zn),
ψk+1 = (zk+1, · · · , zn).

(2.1)

Let Wn,k = (z1ψ1, · · · , zkψk, ψk+1). Then Wn,k is a proper quadratic polyno-
mial map from Bn into BN with N = Q(n, k), where Q(n, k) = (k +1)n− k(k+1)

2 .
As in the case for Wn,1(z; z, λ), one can similarly verify the following:

Proposition 2.5. Wn,k is minimum.

Let ψj be defined as in Example 2.4. For an integer τ with 1 ≤ τ ≤ k,
positive numbers λj ∈ (0, 1) with 1 ≤ j ≤ τ , we define

Wn,k(λ1, · · · , λτ ) := (z1ψ̃1, · · · , zkψ̃k, ψk+1, λ1z1, · · · , λτzτ ). (2.2)

Here
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µjl =
√

1− λ2
l for j 6 l 6 τ and µjl = 1 for l > τ,

ψ̃1 = (
√

1− λ2
1z1,

√
1− λ2

1 + µ2
12z2, · · · ,

√
1− λ2

1 + µ2
1kzk,

√
1− λ2

1zk+1,

· · · ,
√

1− λ2
1zn),

ψ̃2 = (
√

1− λ2
2z2,

√
1− λ2

2 + µ2
23z3, · · · ,

√
1− λ2

2 + µ2
2kzk,

√
1− λ2

2zk+1,

· · · ,
√

1− λ2
2zn),

· · ·
ψ̃τ = (

√
1− λ2

τzτ ,
√

1− λ2
τ + µ2

τ(τ+1)zτ+1, · · · ,
√

1− λ2
τ + µ2

τkzk,√
1− λ2

τzk+1, · · · ,
√

1− λ2
τzn) for τ < k and

ψ̃τ = (
√

1− λ2
τzk,

√
1− λ2

τzk+1, · · · ,
√

1− λ2
τzn) for τ = k,

ψ̃j = ψj when τ < k and τ < j 6 k.

(2.3)

For convenience, we allow τ = 0 in (2.2). In this case, Wn,k(λ1, · · · , λτ ) is
simply defined to be Wn,k. We then have the following

Proposition 2.6. For any 0 < λj < 1, (j ≤ τ ≤ k ≤ n), Wn,k(λ1, · · · , λτ ) is a
minimum proper monomial map from Bn into BN with

N = n + (n− 1) + · · ·+ (n− k) + τ = Q(n, k) + τ = (k + 1)n− k(k + 1)
2

+ τ.

Proof. of Proposition 2.6: It is straightforward to verify that Wn,k(λ1, · · · , λτ )
is indeed a proper monomial map from Bn into BN with N = Q(n, k) + τ. Notice
that

ψ̃j = 0 mod(zj · · · , zn).

Suppose that Wn,k(λ1, · · · , λτ ) is not minimum. Notice that the map preserves
the origin. Then, we have a non-zero complex vector ~µ of length N such that the
inner product < ~µ,Wn,k(λ1, · · · , λτ ) >≡ 0. Now, comparing the coefficients of
terms with z1, z2, · · · , zn-factor, respectively, as in the case of Wn,1(z; z, λ), we
conclude that ~µ = 0. This is a contradiction. ¤

Let F be a holomorphic mapping defined over Bn
. We can modify the above

defined Wn,k(λ1, · · · , λτ ) to construct a new map, denoted by Wn,k(λ1, · · · , λτ , F )
by simply changing ψ̃1 above as follows, while keeping all the others the same:

ψ̃1 = (
√

1− λ2
1z1F,

√
1− λ2

1 + µ2
12z2, · · · ,

√
1− λ2

1 + µ2
1kzk,

√
1− λ2

1zk+1, · · · ,
√

1− λ2
1zn).

Then, when F is a proper polynomial minimum map from Bn into BN∗
with

F (0) = 0, then
Wn,k(λ1, · · · , λτ , F ) (2.4)

can be easily seen to be also a minimum polynomial proper map from Bn into BN

with N = N∗ − 1 + Q(n, k) + τ . In the definition of Wn,k(λ1, · · · , λτ , F ), we also
allow τ = 0. In this case, we define Wn,k(λ1, · · · , λτ , F ) to be constructed through
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Wn,k and F in the same way as for the case of τ > 0. We first notice that there are
minimum monomial maps from Bn into Bln for any l ≥ 1. Letting N∗ = (k−k0)n
for k > k0 > 0 and replacing k by k0 in (2.4), we get the following:

Proposition 2.7. Let F be a minimum proper polynomial map from Bn into
Bn(k−k0) with k > k0 > 0 and F (0) = 0. Then Wn,k0(λ1, · · · , λτ , F ) (0 ≤ τ ≤
k0 ≤ n) is a proper polynomial minimum map from Bn into BN with

N = (k + 1)n− k0(k0 + 1)
2

+ τ − 1.

Also, there are minimum proper monomial maps from Bn into Bkn for any k ≥ 1.

Proof. of Proposition 2.7: It suffices for us to construct minimum proper mono-
mial maps from Bn into Bkn for any k ≥ 1. We do it by induction. The statement
is obvious when k = 1. Suppose we have a proper monomial minimum map F
from Bn into B(k−1)n. Let λ ∈ (0, 1). Then (λznF,

√
1− λ2zn, z′) is easily seen to

be a minimum proper monomial map from Bn into Bkn. ¤

Combining Proposition 2.6 with Proposition 2.7, we obtain the following:

Theorem 2.8. Let N ≥ n > 2 be such that there does not exist a positive integer
k such that kn < N < (k + 1)n − k(k+1)

2 . Then there is a minimum proper
monomial map from Bn into BN . Equivalently, for n > 2, let K(n) = max{m ∈
Z+ : m(m+1)/2 < n} and let Ik := {m ∈ Z+ : kn < m < (k +1)n−k(k +1)/2}
for 1 ≤ k ≤ K(n). Then for any N ≥ n with N 6∈ ∪K(n)

k=1 Ik, there is a minimum
proper monomial map from Bn into BN .

We notice that minimum proper monomial maps from Bn into BN when
N ≥ n2 − 2n + 2 were also constructed in a recent preprint of D’Angelo and Lebl
[DL].

Proof. of Theorem 2.8: We need to construct minimum proper monomial map
from Bn into BN under the assumption that either (k+1)n−k(k+1)/2 ≤ N ≤ (k+
1)n with k ≤ K(n) or N ≥ (K(n)+1)n− K(n)(K(n)+1)

2 . Apparently, K(n) ≤ √
2n.

Let k ≤ n. By Proposition 2.6, we see the existence of minimum proper
monomial maps from Bn into BN when (k + 1)n − k(k + 1)/2 ≤ N ≤ (k +
1)n − k(k − 1)/2. If k − 1 > 0, applying Proposition 2.7 with k0 = k − 1 and
τ = 0, · · · , k − 1, we see the existence of minimum proper monomial maps from
Bn into BN with (k + 1)n − k(k − 1)/2 ≤ N ≤ (k + 1)n − (k − 1)(k − 2)/2 − 1.
Again, applying Proposition 2.7 with k0 = k−2 (if k−2 > 0) and τ = 0, · · · , k−2,
we see the existence of minimum proper monomial maps from Bn into BN with
(k + 1)n − (k − 1)(k − 2)/2 − 1 ≤ N ≤ (k + 1)n − (k − 2)(k − 3)/2 − 1. By an
inductive use of Proposition 2.7, we see the existence of the required maps for N
with (k + 1)n− k(k + 1)/2 ≤ N ≤ (k + 1)n for k ≤ n.

Next, letting k = n + 1 in Proposition 2.7 and inductively applying Proposi-
tion 2.7 with k0 = n, n − 1, · · · ,, we conclude the existence of the required maps
when (n + 2)n − n(n + 1)/2 − 1 ≤ N ≤ (n + 2)n. In particular, this would give
the existence of the required maps when (n + 1)n ≤ N ≤ (n + 2)n. Applying an
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induction argument, we easily conclude the existence of the required maps for any
N ≥ (n + 1)n. This concludes the proof of the theorem. ¤

Theorem 2.2 shows that there are no minimum proper holomorphic maps
from Bn into BN that are C2-smooth up to the boundary when N ∈ I1; and
Theorem 2.3 shows that there are no minimum proper holomorphic maps from Bn

into BN that are C3-smooth up to the boundary when N ∈ I2. We say that proper
holomorphic maps between balls have the second gap when the target dimension
N ∈ I2. In a recent not-yet published preprint of the authors, we proved the
following:

Theorem 2.9. (Huang-Ji-Yin [HJY]) There are no minimum proper holomorphic
maps from Bn into BN , that are C3-smooth up to the boundary, when N ∈ I3.

More generally, let K(n) be defined as above. We conjecture that there are
precisely K(n) gaps for proper holomorphic maps between balls with the source di-
mension n, that are three-times differentiable up to the boundary. More precisely,
we pose the following:

Conjecture 2.10. Let K(n) be the largest positive integer m such that n > m(m+
1)/2. Then, there are no minimum proper holomorphic maps from Bn into BN ,
that are three times differentiable, if and only if N ∈ Ik for a certain 1 ≤ k ≤
K(n). Here Ik is the collection of integers m such that kn < m < (k+1)n−k(k+
1)/2.

We briefly discuss in the rest of this section another type of gap phenomena
for holomorphic maps between the generalized balls in the complex projective
spaces, that was motivated from a joint paper of the first author with S. Baouendi
[BH]. In [BH], among other things, it is proved that any proper holomorphic map
from Bn

` into BN
` with N ≥ n > 2, 0 < ` < n− 1 must be a linear map and thus

is equivalent to a map of the form (Id, 0). Here, we recall that for 0 ≤ ` < n, we
denote by Bn

` the domain in CPn given by

Bn
` := {[z0, · · · , zn] ∈ CPn : |z0|2 + · · ·+ |z`|2 > |z`+1|2 + · · ·+ |zn|2}.

When ` = 0, Bn
` is simply the realization of the unit ball of Cn in the projective

space CPn. Also, as in the ball case, two proper holomorphic maps from Bn
` into

BN
`′ are said to be equivalent if there are σ ∈ Aut(Bn

` ) and τ ∈ Aut(BN
`′ ) such

that F = τ ◦G ◦ σ. In a recent joint paper of the first author with Baouendi and
Ebenfelt, we proved the following:

Theorem 2.11. (Baouendi-Ebenfelt-Huang [BEH]) Let F be a proper holomor-
phic map from Bn

` to BN
`′ . Assume that ` ≤ `′ < 2` and 2` ≤ (n−1), 2`′ ≤ (N−1).

Then, F (Bn
` ) is contained in a linear projective subspace of CPN of dimension

n + `′ − `.

Comparing Theorem 2.11 with Theorems 2.2, 2.3, 2.9, we see that in the gen-
eralized ball case, the difference of the signatures plays the role of the codimension
in the ball case. We certainly believe that there are other gap phenomena to be
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explored when ` > 0. However, instead of formulating more conjectures along
these lines, we mention here the following elementary lemma that is essential for
the statement of Theorem 2.11 to hold. It seems to us that any generalization of
Theorem 2.11 should be started with a better formulation of this lemma:

Lemma 2.12. Let ϕ : (Cn−1, 0) −→ (CN−n, 0) be the germ of a holomorphic
map. Let A(z, z) be a scalar real analytic function near 0. If 3 < n ≤ N, ` < `′ <
2`, 0 < ` ≤ n−1

2 and

A(z, z)|z|2` = −
τ∑

j=1

|ϕj(z)|2 +
N−n∑

j=τ+1

|ϕj(z)|2

with τ = `′ − `. Then A(z, z) ≡ 0 and (ϕτ+1, · · · , ϕN−n) = (ϕ1, · · · , ϕτ ) · U with
U · U t

= Id, where U is a constant matrix. Here we define |z|` = −∑
j≤` |zj |2 +∑n−1

j=` |zj |2.
Lemma 2.12 was discovered and proved when the authors of [BEH] were work-

ing on Theorem 2.11. It follows from the work [BH] on the study of degeneracy for
holomoprhic mappings from hyperquadrics in Cn into hyperqudrics in CN (namely,
Lemma 4.1 of [BH] (or Theorem 1.6(ii)) and Lemma 2.1 of [BH]) as follows: First
assume that φj 6≡ 0 for some 1 ≤ j ≤ τ , for, otherwise, it following from [§2,
BH] that ϕ ≡ 0 and thus Lemma I follows. Applying a Cayley transformation in
the standard way [see (5.1), pp 396, BH] to the map Φ = [ϕ1, · · · , ϕN−n] obtained
from Lemma 2.12, we immediately have a map F = (f, ψ, g) := ΨN−n−1◦Φ◦Ψ−1

n−1

mapping an open piece M of the hyperqudric Hn−2
`−1 into the hyperquadric HN−n−1

τ−1

(see [BH] for the definition). Now, by the assumption that τ < `, one concludes
from [Lemma 2.1, BH] that the Hopf lemma property can not hold for F at any
point in M (namely, the normal component has vanishing normal derivative),
for, otherwise, [Lemma 2.1 (b)(c), BH] would imply that τ ≥ `. Finally, letting
F# = (f1, · · · , fτ , 0′, fτ+1, · · · , fn−3, φ, g) with 0′ a zero vector with (`−τ) compo-
nents, we can apply [Lemma 4.1, BH] (or even [Theorem 1.6(ii), BH]) with `′ = `
to conclude that F# maps a neighborhood of M in Cn−2 into HN−n−1

`−1 , which is
equivalent to the conclusion in Lemma 2.12. At this point, we should mention a
later generalization of Lemma 2.12 in [BER2] (obtained by studying the degen-
eracy of mappings from a more general hypersurface in Cn into a hyperquadric
in CN ), which may find nice applications in the further investigation on the gap
phenomenon.

3 Bishop surfaces with a vanishing Bishop invari-
ant

In this section, we discuss a recent study, carried out in [HY], on the precise holo-
morphic structure of a real analytic Bishop surface near a complex tangent point
with a vanishing Bishop invariant. A Bishop surface is a generically embedded
real surface in the complex space of dimension two. The interesting points on
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a Bishop surface are points with a non-trivial complex tangent, namely, points
with a non-trivial complex tangent space of type (1, 0). The study of Bishop sur-
faces was initiated by Bishop in 1965 in his paper [Bis], where for a point p on a
Bishop surface M with a complex tangent, he defined an invariant λ now called the
Bishop invariant. Bishop showed that there is a holomorphic change of variables,
that maps p to 0, such that M , near p = 0, is defined in the complex coordinates
(z, w) ∈ C2 by

w = zz + λ(z2 + z2) + o(|z|2), (3.5)

where λ ∈ [0,∞]. When λ = ∞, (3.5) is understood as w = z2 + z2 + o(|z|2).
It is now a standard terminology to call p a point with an elliptic, hyperbolic or
parabolic complex tangent, according to whether λ ∈ [0, 1/2), λ ∈ (1/2,∞) or
λ = 1/2,∞, respectively. When p ∈ M has an elliptic complex tangent, Bishop
proved the existence of a family of holomorphic disks attached to M shrinking
down to p. In his famous paper [Bis], he formulated several problems concerning
the uniqueness and regularity of the geometric object obtained by taking the union
of all locally attached holomorphic disks. These problems, including their higher
dimensional cases, were completely answered in the paper of the first author [Hu3],
based on the previous work by Kenig-Webster [KW1-KW2], Moser-Webster [MW],
Moser [Mos] and Huang-Krantz [HK].

Bishop invariant is a quadratic invariant. The celebrated work of Moser-
Webster [MW] first investigated the much more subtle higher order invariants. In
[MW], Moser-Webster discovered an intrinsic pair of involutions on the complexi-
fication of the surface near a non-exceptional complex tangent, which were related
to the higher order holomorphic invariants of M near p. Here, we recall that the
Bishop invariant is said to be non-exceptional if λ 6= 0, 1/2,∞ or if λν2−ν +λ = 0
has no roots of unity in the variable ν. Moser-Webster proved that, near a non-
exceptional complex tangent, M can always be mapped, at least, by a formal
transformation to the normal form defined by:

w = zz + (λ + εws)(z2 + z2), ε ∈ {0, 1,−1}, s ∈ Z+ (3.6)

Moser-Webster also provided a convergence proof of the above mentioned
formal transformation for the non-exceptional elliptic case: 0 < λ < 1/2. However,
the elliptic case with λ = 0 has to be excluded from their theory. Instead, Moser
in [Mos] carried out a study for λ = 0 from a more formal power series point of
view. Moser derived the following formal pseudo-normal form for M with λ = 0:

w = zz + zs + zs + 2Re{
∑

j≥s+1

ajz
j}. (3.7)

Here s is the simplest higher order invariant of M at a complex tangent with the
vanishing Bishop invariant, which we call the Moser invariant. Moser showed that
when s = ∞, M is then holomorphically equivalent to the quadric M∞ = {(z, w) ∈
C2 : w = |z|2}.

Moser’s formal pseudo-normal form is still subject to the simplification of a
very complicated infinitely dimensional group aut0(M∞), the formal self-transformation
group of M∞. And it was left open from the work of Moser [Mos] to derive any
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higher order invariant other than s from the Moser pseudo-normal form. Based
on his previous work with Webster [MW] and his own work [Mos], Moser posed
two basic problems concerning a Bishop surface with a vanishing Bishop invari-
ant. The first one is concerning the analyticity of the geometric object formed by
the attached disks up to the complex tangent point. This was answered in the
affirmative in [HK]. Hence, the work of [HK], together with that of Moser-Webster
[MW], shows that, as far as the analyticity of the local hull of holomorphy is con-
cerned, all elliptic Bishop surfaces are of the same character. The second problem
that Moser asked is concerning the higher order invariants. Notice that by the
Moser-Webster normal form, an analytic elliptic Bishop surface with λ 6= 0 is
holomorphically equivalent to an algebraic one and possesses at most two more
higher order invariants. Moser asked if M with λ = 0 is of the same character as
that for elliptic surfaces with λ 6= 0. Is the equivalence class of a Bishop surface
with λ = 0 determined by an algebraic surface obtained by truncating the Taylor
expansion of its defining equation at a sufficiently higher order level? Gong showed
in [Gon2] that under the equivalence relation of a smaller class of transformation
group, called the group of holomorphic symplectic transformations, M with λ = 0
does have an infinite set of invariants. However, under this equivalence relation,
elliptic surfaces with non-vanishing invariants also have infinitely many invariants.
Gong’s work later on (see, for example, [Gon2-3]) demonstrates that as far as many
dynamical properties are concerned, exceptional and non-exceptional hyperbolic
complex tangents are not much different from each other.

In [HY], a joint paper of the first and the third authors, we derived a complete
formal normal form for a Bishop surface near a vanishing Bishop invariant. We
obtained a complete set of invariants under the action of the formal transformation
group. We showed, in particular, that the modular space for Bishop surfaces with
a vanishing Bishop invariant and with a fixed (finite) Moser invariant s is an
infinitely dimensional manifold in a Frèchet space. This then provides an answer,
in the negative, to Moser’s problem concerning the determination of a Bishop
surface with a vanishing Bishop invariant from a finite truncation of its Taylor
expansion. Furthermore, it was also used to show that most Bishop surfaces with
λ = 0, s 6= ∞ are not holomorphically equivalent to algebraic surfaces. Hence,
one sees a striking difference of an elliptic Bishop surface with a vanishing Bishop
invariant from elliptic Bishop surfaces with non-vanishing Bishop invariants:

Theorem 3.1. (Huang-Yin [HY]) Let M be a formal Bishop surface in C2 with
an elliptic complex tangent at 0, whose Bishop invariant λ = 0 and whose Moser
invariant s < ∞ (s ≥ 3). Namely, let M be defined by w = |z|2 + zs + zs + o(|z|s)
with s < ∞. Then There exists a formal transformation,

(z′, w′) = F (z, w) = (f̃(z, w), g̃(z, w)), F (0, 0) = (0, 0),

such that in the (z′, w′) coordinates, M ′ = F (M) is represented near the origin by
a formal equation of the following normal form:

w′ = z′z̄′ + z′s + z̄′s + ϕ(z′) + ϕ(z′)
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where

ϕ(z′) =
∞∑

k=1

s−1∑

j=2

aks+jz
′ks+j .

Such a formal transform is unique up to a composition from the left with a rotation
of the form:

z′′ = eiθz′, w′′ = w′, where θ is a constant with eisθ = 1.

When the M in Theorem 3.1 is real analytic, namely, the defining equation of
M is given by a convergent power series near 0, one would expect that its unique
normal form (up to a rotation) is also convergent. However, we were not able to
answer such a problem at the moment. Namely, the following conjecture remains
unknown:

Conjecture 3.2. Under the same notation and assumption as in Theorem 3.1.
Assume that M is real analytic. Then its formal normal form is also convergent.
More precisely,

w′ = z′z̄′ + z′s + z̄′s + ϕ(z′) + ϕ(z′)

with

ϕ(z′) =
∞∑

k=1

s−1∑

j=2

aks+jz
′ks+j .

being given by a convergent power series.

Concerning Conjecture 3.2, we were able to show in [HY] that if the formal
normal form is convergent, then the map transforming the surface to its normal
form must be convergent in case the Moser invariant s 6= ∞. Remark that there
are many non-convergent formal maps transforming real analytic Bishop surfaces
with a vanishing Bishop invariant and with s = ∞ to the model surface M∞
defined before. (See [MW] [Mos] [Hu1]). This result may also be compared with
many recent studies concerning convergence of formal CR maps between not too
degenerate real analytic CR manifolds, though our method for proving such a result
is quite different from what is used in the CR setting. Indeed, the main idea in [HY]
for dealing with such a problem is to find a new hyperbolic geometry associated
with surfaces from the Bishop geometry. We refer the reader for the work done in
the CR setting to the papers of Baouendi-Ebenfelt-Rothschild [BER1], Baouendi-
Mir-Rothschild [BMR], Meylan-Mir-Zaitsev [MMZ], and the references therein.

As an application of Theorem 3.1, we also derived in [HY] the following:

Theorem 3.3. A generic real analytic Bishop surface with a vanishing Bishop
invariant and s 6= ∞ is not holomorphically equivalent to an algebraic surface in
C2.

For a Bishop surface M with a non-exceptional hyperbolic complex tangent,
Moser-Webster [MW] showed that it must be formally equivalent to the model
Mλ,ε,s = {(z, w) : w = zz + (λ + εws)(z2 + z2)}, where s is a positive integer and
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ε ∈ {±1, 0}. Moser-Webster and Gong [Gon3] also constructed various examples
showing that the formal process is divergent in general. A natural question is then
the following:

Problem 3.4. Construct the modular space for germs of non-exceptional hyper-
bolic Bishop surfaces, which are formally equivalent to Mλ,ε,s.

It seems reasonable to conjecture that such a modular space is of infinite
dimension modeled over a Banach space whose basis is uncountable. One may
compare this with the well-known modular space problem for germs of holomorphic
maps of (C, 0) to itself with the identity as their linear term (see [Vor]).
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[Po] H. Poincaré, Les fonctions analytiques de deux variables et la
représentation conforme, Ren. Cire. Mat. Palermo, II. Ser. 23, 185-220,
1907.

[Vor] S. M. Voronin, Analytic classification of germs of conformal mappings
(C, 0) to (C, 0), Funct. Anal. Appl. 15 (1), 1-13, 1981.

Xiaojun Huang (huangx@math.rutgers.edu), Department of Mathematics,
Rutgers University, New Brunswick, NJ 08903, USA.
Shanyu Ji (shanyuji@math.uh.edu), Department of Mathematics, Univer-
sity of Houston, Houston, TX 77204, USA.
Wanke Yin (wankeyin@whu.edu.cn), School of Mathematics, Wuhan Uni-
versity, Hubei 430072, China.


